
Maximizing Quadruped Velocity by Minimizing Energy

Srinath Mahankali∗ 1, Chi-Chang Lee∗ 2, Gabriel B. Margolis1, Zhang-Wei Hong1, Pulkit Agrawal1

Fig. 1: High-speed Running Without Reward Shaping. We train a policy to run at high speeds with just two reward terms: velocity
tracking and energy minimization. Furthermore, our approach automatically and adaptively balances these two terms online during training.
This is due to Extrinsic-Intrinsic Policy Optimization (EIPO), a constrained policy optimization algorithm that strictly prioritizes the
velocity-tracking task performance while treating energy minimization as an intrinsic reward.

Abstract— Reinforcement Learning (RL) has been a powerful
tool for training robots to acquire agile locomotion skills. To
learn locomotion, it is commonly necessary to introduce addi-
tional reward-shaping terms, such as an energy minimization
term, to guide an algorithm like Proximal Policy Optimization
(PPO) to good performance. Prior works rely on hyper-
parameter tuning on the weight of the reward shaping terms
to obtain satisfactory task performance. To save the efforts of
tuning these weights, we adopt the Extrinsic-Intrinsic Policy
Optimization (EIPO) framework. The key idea of EIPO is to
establish a constrained optimization framework for the primary
objective of enhancing task performance and the secondary
objective of minimizing energy consumption. It seeks a policy
that minimizes the energy consumption objective within the
optimal policy space for task performance. This guarantees that
the learned policy excels in task performance while conserving
energy, all without requiring manual weight adjustments for
both objectives. Our experiments evaluate EIPO on various
quadruped locomotion tasks, revealing that policies trained
with EIPO consistently achieve higher task performance than
PPO comparisons while maintaining comparable energy con-
sumption levels. Furthermore, EIPO exhibits superior task
performance in real-world evaluations compared to PPO.

I. Introduction
Reinforcement learning (RL) [1] has been successfully

used to train policies for complex and contact-rich motor
skills such as quadruped locomotion [2]–[6], legged ma-
nipulation [7], and in-hand object re-orientation [8], [9].
The typical paradigm involves training policies in simulated
environments and deploying them in the real world [10], [11].
Training policies often requires multiple auxiliary reward-
shaping terms to guide the learning process [12]. Such
reward-shaping terms commonly include penalties for joint
accelerations, velocities, or torques [13]. One important
reward-shaping method is penalizing energy consumption,
which we focus on in this paper as an auxiliary objective.

Minimizing energy consumption is a natural choice of
auxiliary objective, which has been used in many prior works

∗ indicates equal contribution. 1 Improbable AI Lab, MIT, Cambridge,
USA. 2 Research Center for Information Technology Innovation, Academia
Sinica, Taiwan.

Website: https://srinathm1359.github.io/eipo-locomotion

with various different forms such as penalizing mechanical
work [10], [14] or penalizing joint torques [2], [13], [15]
due to its sim-to-real benefits and the emergence of natural
behaviors when minimizing energy consumption [16], [17].
Moreover, prior work has shown that animal and human
locomotion are energy-efficient [18], [19], motivating the use
of an energy penalty as a heuristic for robot locomotion.

Generally, the policy is trained to jointly maximize task
rewards while minimizing energy consumption. The joint
optimization objective is typically expressed as max𝜋 𝐽 (𝜋) −
_𝐹 (𝜋), where 𝜋 represents the policy, and 𝐽 (𝜋) and 𝐹 (𝜋)
stand for task rewards and energy consumption, respec-
tively [16], [17] However, policy training with pre-defined
weightings between the competing objectives of maximizing
task performance and minimizing energy entails a delicate
balance between competing reward criteria [20]. This balance
is commonly achieved either through manual adjustment of
the ratio between the two reward terms or by employing
hyper-parameter optimization techniques (i.e., grid search).
Such techniques require training several policies as a result of
searching for the optimal weighting _, leading to expensive
computational costs. Moreover, jointly optimizing the task
reward and the energy consumption penalty could lead to
sub-optimal task rewards 𝐽 because the policy may maximize
the overall policy’s objective by consuming very little energy
(i.e., minimizing 𝐹) and ignoring 𝐽. However, the learned
policy 𝜋 should ideally be optimal with respect to the
task rewards 𝐽 while treating the minimization of energy
consumption as a secondary objective.

To eliminate the need for tuning _ and obtain the optimal
policy for task performance, we apply the Extrinsic-Intrinsic
Policy Optimization (EIPO) [21], [22] framework to loco-
motion. EIPO was originally designed to remove bias from
intrinsic rewards, such as exploration bonuses [23], to ensure
an RL algorithm can effectively optimize both intrinsic and
extrinsic rewards. To address the issue of minimizing the
energy consumption while preserving optimal task perfor-
mance, we treat energy as an intrinsic reward 𝐹 and task
rewards 𝐽 as the extrinsic rewards and apply the EIPO

https://srinathm1359.github.io/eipo-locomotion

framework. The key idea of EIPO is to separately optimize
both objectives, 𝐹 and 𝐽, using constrained optimization. We
treat maximizing 𝐽 as a constraint and minimizing 𝐹 as the
objective within this constraint. Thus, EIPO identifies policy
candidates that maximize task rewards 𝐽 and selects the pol-
icy that minimizes energy consumption 𝐹 from the identified
candidates. This approach guarantees that the learned policy
𝜋 excels in both task performance and minimizing energy
consumption without the necessity of tuning _.

In our experiments, we evaluate our framework with
various terrains and rewarding schemes. Our experimental
results in simulation showed that EIPO consistently achieves
better task performance and comparable energy consumption
to the baseline with the extensively tuned weight of energy
penalty _. Furthermore, we extend our evaluation to real-
world scenarios, affirming the applicability and effectiveness
of EIPO in practical environments.

II. Preliminaries

Reinforcement Learning for Locomotion: We model
locomotion as a discrete-time sequential decision process and
aim to learn a policy for a robot. The agent (i.e., robot) starts
from an initial observation 𝑜0 representing the robot’s initial
pose. At each timestep 𝑡, the agent perceives the current
observation 𝑜𝑡 (i.e., robot’s proprioception), takes action
𝑎𝑡 sampled from the policy (i.e., controller) 𝜋(.|𝑜0 · · ·𝑜𝑡),
receives reward 𝑟𝑡 and receives the next observation 𝑜𝑡+1
according to the transition function (i.e., robot’s dynamics).
The rewards 𝑟 are referred to as task rewards, which will be
detailed in Section IV. The agent’s goal is to use interactions
with the environment to find the optimal policy 𝜋 such that
the expected cumulative reward is maximized:

max
𝜋

𝐽 (𝜋),where 𝐽 (𝜋) = E
[∞∑︁
𝑡=0

𝛾𝑡𝑟𝑡

]
(1)

where 𝛾 denotes a discount factor [1].
Energy Penalty as Auxiliary Objective: There are mul-

tiple motivations for minimizing energy consumption as an
auxiliary objective: first, this can prevent the policy from
consuming excessive energy, and second, energy minimiza-
tion can occasionally be a useful heuristic for increasing task
performance [24]. Thus, energy consumption minimization
is commonly considered as an auxiliary objective 𝐹 to the
optimization objective Equation (1). The joint objective to
train a policy 𝜋 is defined as follows:

max
𝜋

𝐽 (𝜋) −_𝐹 (𝜋),

where 𝐽 (𝜋) −_𝐹 (𝜋) = E
[∞∑︁
𝑡=0

𝛾𝑡 (𝑟𝑡 −_ 𝑓𝑡)
]

(2)

where 𝑓𝑡 denotes the auxiliary reward received at timestep
𝑡 and _ > 0 controls the weight of auxiliary reward in
optimization. The auxiliary reward 𝑓 is the per-timestep
energy consumption, which we define in Section IV.

Algorithm 1 Extrinsic-Intrinsic Policy Optimization
1: Input: Step sizes [𝜋 , [𝜋′ , and [𝛼

2: Output: Policy 𝜋

3: Randomly initialize two policies 𝜋 and 𝜋′

4: Initialize Lagrangian multiplier 𝛼

5: for iteration = 1 · · · do
6: Rollout a trajectory by 𝜋: 𝜏 = (𝑜0, 𝑎0, 𝑟0, 𝑜1, · · ·)
7: Rollout a trajectory by 𝜋′: 𝜏′ = (𝑜0, 𝑎0, 𝑟0, 𝑜1, · · ·)
8: Estimate 𝛼𝐽 (𝜋) −𝐹 (𝜋) using 𝜏

9: Update 𝜋: 𝜋← 𝜋 + [𝜋∇𝜋 (𝛼𝐽 (𝜋) −𝐹 (𝜋))
10: Estimate 𝐽 (𝜋′) using 𝜏′

11: Update 𝜋′: 𝜋← 𝜋 + [𝜋′∇𝜋 𝐽 (𝜋′)
12: Estimate 𝐽 (𝜋) − 𝐽 (𝜋′) using 𝜏 and 𝜏′

13: Update 𝛼 with estimates of 𝐽 (𝜋) − 𝐽 (𝜋′)
14: end for

III. Method

Although tuning _ in Equation (2) can yield satisfactory
task rewards 𝐽 and energy consumption 𝐹, the optimal policy
given by Equation (2) may not be optimal for task rewards
(i.e., argmax𝜋 𝐽 (𝜋) −_𝐹 (𝜋) ≠ argmax𝜋 𝐽 (𝜋)).

We remove the efforts of tuning _ by reformulating the
problem of maximizing task rewards and minimizing energy
consumption as a constrained optimization problem, adapting
from Extrinsic-Intrinsic Policy Optimization (EIPO) [21].
EIPO optimizes the auxiliary objective 𝐹 (𝜋) under the
constraint that the policy achieves the optimal task rewards
𝐽 (𝜋) = max𝜋′ 𝐽 (𝜋′). The policy optimization objective of
EIPO is expressed as follows:

min
𝜋

𝐹 (𝜋), where 𝐹 (𝜋) = E
[∞∑︁
𝑡=0

𝛾𝑡 𝑓𝑡

]
subject to 𝐽 (𝜋) = max

𝜋′
𝐽 (𝜋′) (3)

We adapt the original EIPO algorithm [21] to solve Equa-
tion (3) and present the algorithmic details in Algorithm 1.
The constraint in Equation (3) is hard to impose since it
requires solving the optimal policy with respect to the task
reward (i.e., max𝜋′ 𝐽 (𝜋′)). Chen et al. [21] utilize Lagrangian
duality to transform Equation (3) into an unconstrained
problem in the following max-min optimization objective:

max
𝛼≥0

min
𝜋

𝐹 (𝜋) −𝛼(𝐽 (𝜋) −max
𝜋′

𝐽 (𝜋′)) = max
𝛼≥0

min
𝜋
L(𝜋,𝛼),

where L(𝜋,𝛼) = 𝐹 (𝜋) −𝛼
(
𝐽 (𝜋) −max

𝜋′
𝐽 (𝜋′)

)
. (4)

𝛼 is the Lagrangian multiplier controlling the weight of the
task reward in optimization of 𝜋. A higher 𝛼 biases the opti-
mization process towards the task reward 𝐽 (𝜋). The optimal
policy 𝜋 for Equation (3) can be obtained through alternating
minimizing L(𝜋,𝛼) for 𝛼 and maximizing L(𝜋,𝛼) for 𝜋.
We use stochastic gradient ascent with momentum to learn
𝛼, where ∇𝛼L = 𝐽 (𝜋) − 𝐽 (𝜋′).

IV. Experimental Design

We aim to answer whether EIPO achieves better task per-
formance while consuming comparable energy levels com-
pared to the common practice of optimizing the sum of task

and energy rewards. We also test whether EIPO can be com-
bined with curriculum learning to obtain a fast command-
conditioned policy. We train our methods and baselines in
the simulator using the Isaac Gym simulator [25], [26].

A. Experiment Settings
We evaluate the ability of EIPO and PPO to train policies

on three different tasks, which we detail below.
1) Velocity Tracking on Flat Ground: The task is to

control a quadruped robot to move at least as fast as
the user-specified target velocities sampled from the range
[0 m/s,1 m/s]. Given the robot’s linear velocity v𝑥𝑦 and
angular velocity 𝜔𝑧 , we define the task reward function for
velocity tracking based on the velocity tracking error:

𝑟track = exp{−(|min(v𝑥 −vcmd
𝑥 ,0) |2 + |v𝑦 −vcmd

𝑦 |2)/𝜎𝑣𝑥𝑦}
+0.5 · exp{−|𝜔𝑧 −𝜔cmd

𝑧 |2/𝜎𝜔𝑧} (5)

Here, we always set the 𝑦 and angular velocity commands
v𝑦 and 𝜔𝑧 to 0. We clip the term v𝑥 − vcmd

𝑥 to be at most
0 when computing the linear velocity tracking reward. Thus,
the task is for the quadruped to move straight with at least
the speed given by the specified 𝑥 velocity command v𝑥 .

2) Velocity Tracking on Rough Terrain: Similar to the
previous task, the quadruped is required to move linearly
at a velocity v𝑥 that is at least the specified command vcmd

𝑥

to maximize its cumulative rewards. We slightly modify the
reward function from above, defining the reward function as
the sum of 𝑥, 𝑦, and angular velocity tracking error:

𝑟track = exp{−|min(v𝑥 −vcmd
𝑥 ,0) |2/𝜎𝑣𝑥𝑦}

+0.05 · exp{−|v𝑦 −vcmd
𝑦 |2/𝜎𝑣𝑥𝑦}

+0.1 · exp{−|𝜔𝑧 −𝜔cmd
𝑧 |2/𝜎𝜔𝑧} (6)

Different from the previous task, in this task, we randomize
the terrain roughness to be between 0 cm and 15 cm mod-
eling the rough terrain as Perlin noise.

3) Maximizing Velocity: The final task is to train a policy
capable of achieving maximal linear speed in a straight-line
trajectory. The reward function for this task is defined as:

𝑟vel = v𝑥 · exp{−|v𝑦 −vcmd
𝑦 |2/𝜎𝑣𝑥𝑦 − |𝜔𝑧 −𝜔cmd

𝑧 |2/𝜎𝜔𝑧} (7)

To enable better sim-to-real transfer, we train policies with a
fixed roughness of 5 cm, and also terminate episodes when-
ever a part of the quadruped other than the foot experiences
contact, which incentivizes the robot to avoid potentially
damaging behavior when deployed to the real world.

4) Velocity Tracking with Curriculum Learning: In addi-
tion to the above tasks, we also incorporate standard tech-
niques used in quadruped locomotion to get a fast command-
conditioned policy and transfer it to the real world. Such
techniques include using an actuator model [27] and in-
creased domain randomization for better sim-to-real transfer
and curriculum learning [5] to enhance exploration. For this
task, the task reward function is defined as:

𝑟track = exp{−(|v𝑥 −vcmd
𝑥 |2 + |v𝑦 −vcmd

𝑦 |2)/𝜎𝑣𝑥𝑦}
+0.5 · exp{−|𝜔𝑧 −𝜔cmd

𝑧 |2/𝜎𝜔𝑧}. (8)

For this task, the 𝑦-velocity command is set in [−0.6,0.6],
while the 𝑥 and angular velocity commands are initially
set in [−1,1]. They can increase as training progresses
based on the curriculum learning setup in [5], with angular
velocity command in [−10,10] and 𝑥-velocity command in
[−1,10]. For better sim-to-real transfer, we train policies with
terrain roughness randomized between 0 cm and 5 cm. We
terminate episodes when a part of the quadruped other than
the foot experiences contact and when a power consumption
of greater than 800 W occurs in a single timestep. We found
this was necessary to avoid triggering the emergency stop
when giving high 𝑥-velocity commands during deployment.

B. Defining Energy Consumption
As we are interested in learning energy-efficient loco-

motion policies that do not sacrifice task performance, the
auxiliary reward function in this paper is determined by the
negative power consumption. Based on the energy metric
defined in [28], we define the energy reward function as:

𝑟energy = 𝑟mechanical + 𝑟heating + 𝑟battery− 𝑟survival

𝑟mechanical = clip(𝜏,min = −3,max = 1e4)𝑇 ¤𝑞
𝑟heating = 0.7 · ∥𝜏 ∗𝑔∥2, 𝑟battery = 42, 𝑟survival = 200 (9)

This reward is multiplied by a negative coefficient to in-
centivize the robot to use less energy. The parameters of
the reward function are not tuned for policy performance
and are regressed to explicitly measure its real-world battery
consumption. Similar metrics for power consumption have
been used for locomotion, with exact formulas depending
on the robot [17]. Here, 𝑔 represents the gear ratios for the
Unitree Go1 robot. As the reward would be negative, the
robot could be incentivized to terminate the episode early.
Thus, we also include a survival bonus of 200 in the reward.

C. Implementation details
a) Observations and actions: The policy is provided in-

put in the form of an 𝐻-step history comprising observations
𝑜𝑡−𝐻...𝑡 , commands 𝑐𝑡−𝐻...𝑡 , previous actions 𝑎𝑡−𝐻−1...𝑡−1,
and timing reference variables 𝑡𝑡−𝐻...𝑡 [12]. For tasks where
the policy does not depend on the command, such as maxi-
mizing the velocity of the robot, the commands are fixed to 0.
The observation space 𝑜𝑡 includes joint positions, velocities
𝑞𝑡 , ¤𝑞𝑡 , and the gravity vector in the body frame 𝑔𝑡 , where
𝑞𝑡 , ¤𝑞𝑡 are measured by joint encoders and 𝑔𝑡 is measured by
accelerometer. The action 𝑎𝑡 consists of position targets for
all twelve joints. A zero action corresponds to the nominal
joint position, 𝑞. The position targets are tracked using a
proportional-derivative controller with 𝑘 𝑝 = 20, 𝑘𝑑 = 0.5.

b) Model architecture: The model architecture for each
PPO policy consists of a Multi-Layer Perceptron (MLP) with
hidden layer sizes of [512,256,128] and Exponential Linear
Unit (ELU) activations. The policy input also incorporates
an estimate of the robot body velocity. These parameters are
predicted from the observation history using a supervised
learning approach [29]. The estimator module consists of an
MLP with hidden layer sizes [256, 128] and ELU activations.

(a) Task Performance (b) Energy Consumption

Fig. 2: Comparing EIPO and PPO in Flat Terrain. (a) EIPO
consistently outperforms both PPO with tuned _ and PPO with no
energy reward in task performance. (b) The energy consumption of
EIPO is slightly greater than PPO with tuned _, and EIPO is more
energy efficient than PPO with no energy reward.

c) Training hyperparameters: The policy model was
trained using Adam [30] with 𝛽1 = 0.9 and 𝛽2 = 0.999,
learning rate 0.001, gradient clipping 1.0, number of epochs
per rollout 5, number of timesteps per rollout 24, and number
of minibatches 4. We update the 𝛼 after each iteration using
a learning rate of 0.01, gradient clipping value of 1.0, and
momentum coefficient 0.99.

D. Evaluation
We take PPO trained with task and auxiliary rewards

weighted by _ as a baseline (Equation (2)). For all exper-
iments, we sweep over the choices of

_ ∈ [0,1e-4,2e-4,5e-4,1e-3,2e-3,5e-3,1e-2,2e-2], (10)

which covers a wide range of possible weightings of the
different policy objectives. This range covers scenarios where
the average energy reward is one order of magnitude less
than the task reward to scenarios where it is one order of
magnitude more than the task reward.

V. Results in Simulation
To compare EIPO v/s PPO, we train three seeds of policies

with both algorithms in all the problem settings described in
Section IV-A and report their performance in simulation.

A. Results on Flat Ground
We test whether EIPO can outperform PPO at learning

an energy-efficient command-conditioned locomotion policy
on flat ground as detailed in Section IV-A.1. We train PPO
policies with the task reward defined in Equation (5) and
energy consumption reward defined in Equation (9), for each
_ defined in Equation (10). Finally, we train EIPO policies
where _ is initialized to 0.005. We compute the average
performance across random seeds. All policies are trained
for 4000 iterations and have a 5-step observation history.

In Figure 2a, we display the task performance of PPO,
PPO with auxiliary energy reward (where _ = 0.005), and
EIPO. The task performance is calculated by running each of
the policies at each specified 𝑥-velocity command, which is
between 0 and 1, and computing the sum of rewards obtained
by the policy divided by 1000, which is the maximum length
of the episode. As shown in Figure 2a, EIPO consistently
outperforms both PPO and PPO with an energy reward

(a) Task Performance (b) Energy Consumption

Fig. 3: Comparing EIPO and PPO in Rough Terrain. (a) EIPO,
shown in blue, outperforms or matches PPO, both with and without
an energy reward, at all velocity commands in terms of task reward.
(b) EIPO, shown in blue, consumes less energy than PPO.

across velocity commands, showing that including the energy
objective helps performance when combined with EIPO.

In Figure 2b, we estimate the energy efficiency of the
different policies by considering the energy consumption
divided by the robot’s velocity. We find that PPO with no
energy reward consumes a large amount of energy, indicating
suboptimal energy consumption. Meanwhile, PPO with the
energy reward consumes less energy than EIPO at lower
velocity commands but similar amounts of energy at higher
commands. This represents EIPO working as intended since
EIPO prioritizes task performance over energy minimization,
and EIPO achieves a higher task performance in this case.

B. Results on Rough Terrains
Next, we test whether EIPO can outperform PPO at

learning an energy-efficient yet high-performing locomotion
policy trained on rough terrain reaching up to 15 cm of
roughness, as described in Section IV-A.2. Similarly, as in
Section V-A, we train policies for each _ given in Equa-
tion (10) using PPO as a baseline, and we compare the
performance to EIPO. We train policies for 4000 iterations
with a 10-step observation history. For this task, we initialize
_ to 0.0002 for EIPO. In Figure 3a, we plot the performance
of PPO, PPO with a tuned _ for this task (_ = 0.005),
and EIPO across different velocity commands at 15 cm
roughness. EIPO decreases in performance as the target
velocity increases but is significantly higher than PPO with a
tuned _ for velocity commands above 0.4 m/s. PPO fails to
perform well without an energy term. EIPO is also more
energy efficient than PPO with a tuned _, as shown in
Figure 3b, where we plot the energy divided by velocity.
Since the curve for EIPO is far below the curve for PPO
with a tuned _, the EIPO policies are more energy efficient
than the policies trained by PPO with a tuned _.

C. Hyperparameter Study
We analyze the performance of PPO trained with all the

different choices for _, given by Equation (10), in Figure 4 in
both the settings described in Section IV-A.1 and Section IV-
A.2. As shown in Figure 4a, for the policies trained in flat
terrain, EIPO outperforms PPO for all _, across the entire
range of velocity commands in the interval [0,1] in terms of
task reward. For the policies trained in rough terrain, EIPO
matches PPO at low-velocity commands in terms of task

(a) Flat Terrain (b) Rough Terrain

Fig. 4: Task Performance of Different Policies Trained in Flat and
Rough Terrains. (a) EIPO consistently has higher task reward on
flat terrain than PPO, regardless of the choice of _. (b) EIPO has
much better task reward on rough terrain than PPO.

rewards and outperforms PPO when the velocity command
is at least 0.4 m/s, as shown in Figure 4b. Rather than purely
acting to regularize the policy’s behavior, energy minimiza-
tion is also helpful for optimizing the task reward, as implied
by the fact that PPO improves in performance when using
an auxiliary energy penalty in the rough terrain task. This
could be due to many optimization-related reasons such as
improving exploration or simplifying credit assignment.

D. Results on Velocity Maximization
We also train policies using EIPO and PPO to solve the

task described in Section IV-A.3, where the robot must run
straight forward as fast as possible to maximize the task
reward. We train three seeds per coefficient _ in the set
defined by Equation (10) and train three seeds of EIPO,
where _ is initialized to 0.0002. Each policy is trained
for 10,000 iterations since we observed that policies take
longer to converge for this task. Each policy has a 10-
step observation history. To respect the torque-speed curve
characteristic of all electric motors, we clip the maximum
allowed torque for a joint to 𝜏max = 33 · (¤𝑞max − | ¤𝑞 |)/ ¤𝑞max,
where ¤𝑞 is the joint velocity and ¤𝑞max is the maximum
velocity at that joint specified by the URDF file for the Uni-
tree Go1. We list the peak velocity of the different methods
(EIPO, PPO, and PPO with different _) in Table I, taking
the interquartile mean (IQM) over 1000 episodes and the
three seeds. We use the IQM to aggregate the performance
across episodes and seeds as it is robust to outliers while
requiring less data to be statistically significant [31]. We
compute the 95% confidence intervals using bootstrapping.
As shown in Table I, EIPO achieves a much higher peak
velocity in simulation compared to all policies trained by
PPO. Penalizing energy consumption hurts task performance
when combined with PPO, as it reduces the robot’s peak
velocity. Therefore, it may be surprising that EIPO can obtain
a higher performance when using the energy penalty. We
hypothesize that this could be due to EIPO adaptively tuning
the weighting of the energy penalty, while PPO holds it
constant throughout training.

E. Incorporating Curriculum Learning
Finally, we test whether EIPO can be used to train energy-

efficient omni-directional velocity-tracking policies that can

Algorithm Peak Vel. (m/s) Algorithm Peak Vel. (m/s)

EIPO 2.86 (2.84, 2.89) PPO (_ = 0.001) 1.64 (1.63, 1.65)
PPO (_ = 0) 2.12 (2.12, 2.12) PPO (_ = 0.002) 1.58 (1.55, 1.60)
PPO (_ = 0.0001) 1.55 (1.53, 1.56) PPO (_ = 0.005) 1.62 (1.61, 1.62)
PPO (_ = 0.0002) 1.49 (1.48, 1.50) PPO (_ = 0.01) 1.45 (1.45, 1.46)
PPO (_ = 0.0005) 1.58 (1.57, 1.60) PPO (_ = 0.02) 1.37 (1.37, 1.37)

TABLE I: Maximum velocity (higher is better) achieved by EIPO
and PPO trained with various choices of _ in simulation. EIPO
achieves a peak velocity of approximately 0.74 m/s faster than
the next fastest policy, PPO trained without any energy reward.
The peak velocities of the remaining policies are even slower
than EIPO’s. 95% confidence intervals are estimated using the
bootstrapping method.

travel at high speeds with minimal reward shaping, as de-
scribed in Section IV-A.4. We train policies with EIPO, PPO
with a tuned _ for the task (_ = 0.005), and PPO using
a standard shaped reward used in locomotion works [5],
on a range of linear and angular velocity commands using
curriculum learning. In addition, we test EIPO’s applicability
to other auxiliary rewards by training policies using a reward
function that incentivizes smooth behavior:

𝑟smooth = 2e-4 · ∥𝜏∥2 +1e-2 · ∥𝑎∥2 +2.5e-7 · ∥ ¥𝑞∥2 (11)

This reward function is a small subset of the reward terms
found in [5]. For both EIPO policies, we initialize _ to 0.005.
As shown in Figure 5, PPO performs poorly using only task
and energy rewards. Meanwhile, EIPO trained using only
task and energy rewards performs similarly to PPO trained
using the same reward function as [5] while using similar
or less energy at all commands. It does not perform as well
at high yaw-velocity commands, but performs better at high
x-velocity commands, which indicates similar performance
between policies. Based on Figure 5, EIPO trained using only
task and smoothness rewards also performs similarly and
consumes less energy than PPO trained with reward shaping.
However, it consumes slightly more energy than EIPO trained
using only task and energy consumption rewards.

VI. Real-World Deployment
We test whether the policies from Section V-D and Sec-

tion V-E behave similarly when deployed in the real world.
a) Deploying the Maximum Velocity Policy: We deploy

the EIPO policy, which obtains a peak velocity of approxi-
mately 2.9 m/s in simulation, as shown in Table I. We also
deploy a PPO policy, trained with _ = 0.01, which obtains
a peak velocity of approximately 1.5 m/s in simulation. We
measure the robot’s velocity as it runs forward in Figure 6
over time. As shown by the blue curve in Figure 6, EIPO
achieves a peak speed of approximately 2.5 m/s and is still
accelerating as the blue curve is still increasing at the end.
Meanwhile, the PPO policy achieves a peak speed of approx-
imately 1.5 m/s. Thus, the policies learned in simulation with
EIPO can transfer to the real world with similar behavior as
in simulation, even at speeds of 2.5 m/s. While the compared
policies trained with PPO that run at higher velocities in
simulation (specifically, those trained without any energy
penalty), these policies were unsafe to deploy based on their
behavior in simulation, which we show in the attached video.

Fig. 5: Task reward and energy consumption across different
commands in simulation for PPO trained with only task + energy
rewards, PPO trained with reward shaping from [5], EIPO trained
with only task + energy rewards, and EIPO trained with the
smoothness reward (Equation (11)). As shown in the figure, EIPO
with a simple auxiliary reward for this task performs similarly to
complex reward shaping functions.

b) Deploying the Curriculum Trained Policy: We de-
ploy the EIPO policy trained with only task and energy
consumption rewards in the real world. As shown in Figure 1,
the gait that emerges from training is stable and animal-
like. It exhibits a variable contact schedule. It has a longer
stance phase when walking at low speeds and a gallop when
running at top speed: an asymmetrical gait with a four-beat
rhythm and a suspension phase. This gait is enabled by the
minimal reward shaping used in our method, in contrast to
prior works that use reward shaping to incentivize particular
gaits or reference trajectories to specify the desired behavior.

VII. Related Work

Prior works in learning legged locomotion have not exclu-
sively optimized the policy for velocity tracking or forward
progress but instead used a reward function with a weighted
sum of terms to express energy minimization, safety, and
other objectives of the robot’s motion, with common reward
terms developed gradually over time [2], [3], [10], [12], [26],
[27]. A common and simple reward formulation consists
of minimizing energy consumption and maximizing speed
or velocity tracking performance. Yang et al. [32] used a
hierarchical architecture where the learned policy predicts
a gait style command for a low-level MPC controller and
varies the command across speeds to improve energy effi-
ciency. Fu et al. [16] optimized an end-to-end policy with
a reward function consisting of a linear function of energy
minimization and velocity tracking. Another line of work
has incorporated reference motion capture footage to aid
learning, also using an additional reward term or additive
policy loss [33]–[35]. Some recent promising directions are
to simplify or generalize the task specification by using
a point reaching formulation [13] or explicitly formulating
some terms as constraints [15], [36]. However, in all cases,
the policy optimization objective consists of a weighted sum
of locomotion and auxiliary reward where the weighting
is a hyperparameter that must be tuned. In contrast, our
work leverages the EIPO framework to directly optimize
the locomotion task performance and automatically tunes the
auxiliary rewards to ensure that they aid in the task.

Fig. 6: Velocity of the quadruped with EIPO and PPO policy de-
ployed in the real world. The EIPO policy significantly outperforms
the PPO policy, having a peak speed of almost 1m/s higher.

VIII. Discussion

Our experiments demonstrate that EIPO can improve task
performance while being comparably energy efficient to
PPO in locomotion tasks. Specifically, we observed that
in two velocity tracking tasks, policies trained with EIPO
outperformed those trained with PPO in adhering to velocity
commands, particularly on challenging terrain. Additionally,
EIPO policies exhibited energy efficiency on par with or
even superior to PPO policies. Furthermore, in a velocity
maximization task, policies trained with EIPO achieved
significantly higher speed than PPO policies, and these EIPO-
trained policies demonstrated equally effective performance
in the real world.

Based on our results, a promising direction for further
research is to apply EIPO to more domains for motor control,
such as manipulation and in-hand reorientation, to see if it
improves performance beyond PPO in even more general
settings. Another direction for further research is exploring
which auxiliary reward terms work better for different types
of tasks when combined with EIPO. Previously, EIPO has
only been found to improve performance in Atari games [21]
when combined with novelty-based intrinsic rewards such
as Random Network Distillation [23]. Our work identifies
energy consumption as an auxiliary reward that improves
performance in locomotion tasks when combined with EIPO.

Acknowledgement

The contributions of all authors are listed at the project website. We
thank the members of the Improbable AI lab for the helpful discussions
and feedback on the paper. We are grateful to MIT Supercloud and the
Lincoln Laboratory Supercomputing Center for providing HPC resources.
This research was partly supported by Hyundai Motor Company, DARPA
Machine Common Sense Program, the MIT-IBM Watson AI Lab, and the
National Science Foundation under Cooperative Agreement PHY-2019786
(The NSF AI Institute for Artificial Intelligence and Fundamental Interac-
tions, http://iaifi.org/). We acknowledge support from ONR MURI under
grant number N00014-22-1-2740. Research was sponsored by the Army
Research Office and was accomplished under Grant Number W911NF-21-
1-0328. The views and conclusions contained in this document are those
of the authors and should not be interpreted as representing the official
policies, either expressed or implied, of the Army Research Office or the U.S.
Government. The U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copyright notation
herein. This research was also supported by the Paul E. Gray (1954) UROP
Fund and the John Reed Fund. This work received partial support from the
Biomedical Acoustic Signal Processing (Bio-ASP) Laboratory, led by Dr.
Yu Tsao, at the Research Center for Information Technology Innovation,
Academia Sinica, Taiwan.

https://srinathm1359.github.io/eipo-locomotion

References
[1] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction,

2018.
[2] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis,

V. Koltun, and M. Hutter, “Learning agile and dynamic motor skills
for legged robots,” Science Robotics, vol. 4, no. 26, p. eaau5872, 2019.

[3] A. Kumar, Z. Fu, D. Pathak, and J. Malik, “RMA: Rapid motor
adaptation for legged robots,” Robotics: Science and Systems, 2021.

[4] G. B. Margolis, T. Chen, K. Paigwar, X. Fu, D. Kim, S. Kim, and
P. Agrawal, “Learning to jump from pixels,” Conference on Robot
Learning, 2021.

[5] G. B. Margolis, G. Yang, K. Paigwar, T. Chen, and P. Agrawal,
“Rapid locomotion via reinforcement learning,” Robotics: Science and
Systems, 2022.

[6] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning robust perceptive locomotion for quadrupedal robots in the
wild,” Science Robotics, vol. 7, no. 62, p. eabk2822, 2022.

[7] Y. Ji, G. B. Margolis, and P. Agrawal, “Dribblebot: Dynamic legged
manipulation in the wild,” arXiv preprint arXiv:2304.01159, 2023.

[8] T. Chen, J. Xu, and P. Agrawal, “A system for general in-hand object
re-orientation,” in Conference on Robot Learning. PMLR, 2022, pp.
297–307.

[9] T. Chen, M. Tippur, S. Wu, V. Kumar, E. Adelson, and P. Agrawal,
“Visual dexterity: In-hand dexterous manipulation from depth,” arXiv
preprint arXiv:2211.11744, 2022.

[10] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bo-
hez, and V. Vanhoucke, “Sim-to-real: Learning agile locomotion for
quadruped robots,” arXiv preprint arXiv:1804.10332, 2018.

[11] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-
real transfer of robotic control with dynamics randomization,” in 2018
IEEE international conference on robotics and automation (ICRA).
IEEE, 2018, pp. 3803–3810.

[12] G. B. Margolis and P. Agrawal, “Walk these ways: Tuning robot control
for generalization with multiplicity of behavior,” in Conference on
Robot Learning, 2023.

[13] N. Rudin, D. Hoeller, M. Bjelonic, and M. Hutter, “Advanced skills
by learning locomotion and local navigation end-to-end,” in 2022
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2022, pp. 2497–2503.

[14] Z. Fu, X. Cheng, and D. Pathak, “Deep whole-body control: learning
a unified policy for manipulation and locomotion,” in Conference on
Robot Learning. PMLR, 2023, pp. 138–149.

[15] Y. Kim, H. Oh, J. Lee, J. Choi, G. Ji, M. Jung, D. Youm, and
J. Hwangbo, “Not only rewards but also constraints: Applications on
legged robot locomotion,” arXiv preprint arXiv:2308.12517, 2023.

[16] Z. Fu, A. Kumar, J. Malik, and D. Pathak, “Minimizing energy
consumption leads to the emergence of gaits in legged robots,” in
Conference on Robot Learning, 2021.

[17] Y. Yang, T. Zhang, E. Coumans, J. Tan, and B. Boots, “Fast and
efficient locomotion via learned gait transitions,” in Conference on
Robot Learning. PMLR, 2022, pp. 773–783.

[18] D. F. Hoyt and C. R. Taylor, “Gait and the energetics of locomotion
in horses,” Nature, vol. 292, no. 5820, pp. 239–240, 1981.

[19] J. E. Bertram, “Constrained optimization in human walking: cost
minimization and gait plasticity,” Journal of experimental biology, vol.
208, no. 6, pp. 979–991, 2005.

[20] R. Yang, X. Sun, and K. Narasimhan, “A generalized algorithm
for multi-objective reinforcement learning and policy adaptation,”
Advances in neural information processing systems, vol. 32, 2019.

[21] E. Chen*, Z.-W. Hong*, J. Pajarinen, and P. Agrawal, “Redeeming
intrinsic rewards via constrained optimization,” Advances in Neural
Information Processing Systems, vol. 35, pp. 4996–5008, 2022.

[22] I. Shenfeld, Z.-W. Hong, A. Tamar, and P. Agrawal, “TGRL: An
algorithm for teacher guided reinforcement learning,” in Proceedings
of the 40th International Conference on Machine Learning, ser.
Proceedings of Machine Learning Research, A. Krause, E. Brunskill,
K. Cho, B. Engelhardt, S. Sabato, and J. Scarlett, Eds., vol. 202.
PMLR, 23–29 Jul 2023, pp. 31 077–31 093. [Online]. Available:
https://proceedings.mlr.press/v202/shenfeld23a.html

[23] Y. Burda, H. Edwards, A. Storkey, and O. Klimov, “Exploration
by random network distillation,” in International Conference
on Learning Representations, 2019. [Online]. Available: https:
//openreview.net/forum?id=H1lJJnR5Ym

[24] A. Y. Ng, D. Harada, and S. Russell, “Policy invariance under reward
transformations: Theory and application to reward shaping,” in Icml,
vol. 99. Citeseer, 1999, pp. 278–287.

[25] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Mack-
lin, D. Hoeller, N. Rudin, A. Allshire, A. Handa, et al., “Isaac gym:
High performance gpu-based physics simulation for robot learning,”
arXiv preprint arXiv:2108.10470, 2021.

[26] N. Rudin, D. Hoeller, P. Reist, and M. Hutter, “Learning to walk
in minutes using massively parallel deep reinforcement learning,” in
Conference on Robot Learning. PMLR, 2022, pp. 91–100.

[27] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning quadrupedal locomotion over challenging terrain,” Science
robotics, vol. 5, no. 47, p. eabc5986, 2020.

[28] S. Seok, A. Wang, M. Y. Chuah, D. J. Hyun, J. Lee, D. M. Otten,
J. H. Lang, and S. Kim, “Design principles for energy-efficient legged
locomotion and implementation on the mit cheetah robot,” Ieee/asme
transactions on mechatronics, vol. 20, no. 3, pp. 1117–1129, 2014.

[29] G. Ji, J. Mun, H. Kim, and J. Hwangbo, “Concurrent training of a
control policy and a state estimator for dynamic and robust legged
locomotion,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp.
4630–4637, 2022.

[30] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[31] R. Agarwal, M. Schwarzer, P. S. Castro, A. C. Courville, and M. Belle-
mare, “Deep reinforcement learning at the edge of the statistical
precipice,” Advances in neural information processing systems, vol. 34,
pp. 29 304–29 320, 2021.

[32] Y. Yang, T. Zhang, E. Coumans, J. Tan, and B. Boots, “Fast and
efficient locomotion via learned gait transitions,” in Conference on
Robot Learning, 2021.

[33] X. B. Peng, Z. Ma, P. Abbeel, S. Levine, and A. Kanazawa, “Amp:
Adversarial motion priors for stylized physics-based character control,”
ACM Transactions on Graphics (ToG), vol. 40, no. 4, pp. 1–20, 2021.

[34] A. Escontrela, X. B. Peng, W. Yu, T. Zhang, A. Iscen, K. Goldberg,
and P. Abbeel, “Adversarial motion priors make good substitutes for
complex reward functions,” in 2022 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS). IEEE, 2022, pp.
25–32.

[35] Y. Fuchioka, Z. Xie, and M. Van de Panne, “Opt-mimic: Imitation
of optimized trajectories for dynamic quadruped behaviors,” in 2023
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2023, pp. 5092–5098.

[36] J. Lee, L. Schroth, V. Klemm, M. Bjelonic, A. Reske, and M. Hut-
ter, “Evaluation of constrained reinforcement learning algorithms for
legged locomotion,” arXiv preprint arXiv:2309.15430, 2023.

https://arxiv.org/abs/2211.11744
https://proceedings.mlr.press/v202/shenfeld23a.html
https://openreview.net/forum?id=H1lJJnR5Ym
https://openreview.net/forum?id=H1lJJnR5Ym

	Introduction
	Preliminaries
	Method
	Experimental Design
	Experiment Settings
	Velocity Tracking on Flat Ground
	Velocity Tracking on Rough Terrain
	Maximizing Velocity
	Velocity Tracking with Curriculum Learning

	Defining Energy Consumption
	Implementation details
	Evaluation

	Results in Simulation
	Results on Flat Ground
	Results on Rough Terrains
	Hyperparameter Study
	Results on Velocity Maximization
	Incorporating Curriculum Learning

	Real-World Deployment
	Related Work
	Discussion
	References

