
Does Novelty-Based Exploration Maximize Novelty?

Srinath Mahankali, Zhang-Wei Hong, Pulkit Agrawal
Improbable AI Lab, Massachusetts Institute of Technology

Abstract

Exploration is a central challenge in reinforcement learning. While novelty-based
intrinsic rewards outperform random exploration in hard-exploration tasks, the
mechanism by which they improve exploration is unclear. The dominant intuition
is that such methods measure and incentivize novelty, resulting in superior explo-
ration. Counterintuitively, we find that state-of-the-art exploration methods such
as Random Network Distillation (RND) neither measure novelty accurately nor
do they optimize novelty well. Based on the results, we hypothesize that RND’s
performance gain can be explained by an alternative perspective to novelty: state-
dependent perturbation of the reward function. To test this insight, we develop
a simple scheme for randomly generating intrinsic rewards that do not measure
novelty. An experimental study on ATARI games, the standard benchmark for
exploration, reveals that randomly generated intrinsic rewards match the perfor-
mance of RND on most games. Our findings question the underlying assumption
of intrinsic reward functions needing to represent novelty to help exploration, and
provides motivation for further investigation into alternative forms of intrinsic
rewards that might be more suited to high-dimensional observation spaces.

1 Introduction

Exploration is a central problem in reinforcement learning (RL) [31], which is even more challenging
in sparse-reward scenarios where the learning signal is rarely available, impeding policy improvement.
Inspired by the principle of optimism in the face of uncertainty, various exploration methods have
been developed to incentivize the agent to visit novel states (i.e., uncertain states) [25, 21, 12, 22, 34,
2, 3, 10, 4] via exploration bonuses. We will refer to these exploration methods as novelty-based
exploration. The standard paradigm is to augment the task reward (rEt ; also called extrinsic reward)
with an exploration bonus (rIt ; also called intrinsic reward) and optimize the policy to maximize
for the sum of rewards, rEt + rIt . Such methods have demonstrated impressive performance gains
over naive exploration strategies such as ϵ-greedy on well-known hard exploration tasks (e.g., ATARI
games like Venture, Montezuma’s Revenge, and Gravitar [32, 4]). However, we find a gap between
the theory and practice of why exploration bonuses improve performance, a topic we investigate.

A critical aspect of novelty-based exploration is the choice of the intrinsic reward. Suppose one
is optimizing for worst-case regret in a tabular Markov Decision Process (MDP). In that case, the
theoretically optimal choice for intrinsic reward is state novelty computed as the inverse state-action
visitation counts 1/

√
N(s, a) [14], where N(s, a) denotes the number of times the state-action

pair, (s, a), occured in agent’s experience. However, when the state space is continuous and high-
dimensional, state-action visitation counts are ill-defined [2]. In such a scenario, one could consider
measuring the state-action density, but it is challenging to estimate [18]. Consequently, many prior
works investigated tractable alternatives or approximations to density estimation [2, 20, 22, 3, 23].

A state-of-the-art method for measuring novelty and, thereby encouraging exploration is Random
Network Distillation (RND) [3]. RND computes novelty as the error in predicting a randomly
generated low-dimensional embedding of a state. After visiting the state s, the agent also updates
its prediction. Intuitively, the more times the agent visits a particular state, the more accurate its

Preprint. Under review.

prediction is going to be, and thus prediction error should be inversely proportional to how novel the
state is. However, we found that this intuition does not always hold true. Even in simple grid-world
environments, we found that RND rewards do not decrease monotonically at visited states during
training (Section 3.1), which implies that RND may not measure novelty accurately. Despite the
inaccuracy in measuring state novelty, RND has demonstrated significant performance improvement
on challenging exploration tasks. This leads to a critical question: “Is maximizing novelty the primary
reason for the efficacy of novelty-based exploration?"

One possibility is that despite the novelty measure being inaccurate, it might still provide a reasonably
accurate gradient for policy optimization encouraging the agent to explore. To investigate if this the
case, we studied the question: “Can current policy optimization methods learn a policy that maximizes
the novelty measure?" It is standard practice within novelty-based exploration to simultaneously train
the policy and the novelty estimator. As the novelty estimator changes every episode, the intrinsic
reward function also changes over time. Because the policy is usually represented as a deep neural
network, it cannot be perfectly optimized with respect to the updated reward function in one or a few
gradient steps. Therefore, at any given time, the current policy is likely an imperfect optimizer of
the intrinsic rewards [35]. To test how sub-optimal this optimization might be, we trained a policy
using the state-of-the-art policy gradient method, PPO [26], to optimize only the RND reward. Quite
surprisingly, we found that even in a simple grid-world environment, at different stages of training, a
random policy achieved higher RND rewards than the trained PPO policy (see Section 3).

500 1000 1500 2000 2500 3000
Training Steps

2.0

1.5

1.0

0.5

0.0

0.5

1.0

M
ea

n
R

N
D

-N
or

m
al

iz
ed

 S
co

re
RPF (Ours)
RND
PPO

Figure 1: Random reward functions (denoted as
RPF) that use random noise as intrinsic rewards are
competitive to intrinsic reward methods measuring
novelty (denoted as RND) and substantially out-
perform the policy trained with only task rewards
(denoted as PPO). Performance is measured as the
interquartile mean (IQM) [1] of normalized return.

The above observations suggest that the intu-
ition behind methods like RND improving ex-
ploration being that they measure and optimize
novelty is incomplete. Neither does RND accu-
rately measure novelty, nor can current methods
optimize novelty. An alternate hypothesis is
that intrinsic rewards like novelty measures per-
turb the policy optimization objective function,
which encourages the agent to explore. To test
this hypothesis, we constructed an alternative in-
trinsic reward, random reward functions (short-
hand RPF), that perturb the policy optimization
objective but do not measure novelty. Compari-
son against RND on ATARI games where RND
significantly outperforms PPO trained only with
game rewards reveals that most improvement ob-
tained by RND over PPO can also be obtained
by random reward functions (i.e., RPF; see Fig-
ure 1). On games where RND significantly out-
performs PPO, RND outperforms RPF on some
(e.g., Montezuma’s Revenge), whereas RPF out-
performs RND on others (e.g., Venture). Overall,
RPF outperforms or matches RND in the major-
ity of games. Note that the goal of this paper is not to develop a state-of-the-art exploration method,
but to dissect the mechanism by which current intrinsic reward methods improve exploration.

In light of our findings, one way forward to improve exploration is to develop better measures of
novelty and superior policy optimization strategies for maximizing exploration bonuses. A second
view is that given the lack of theoretical justification for using novelty in continuous state spaces
and the known difficulty of measuring novelty in high-dimensional spaces, perhaps an alternative
worth considering is intrinsic rewards that are not based on novelty. Such intrinsic rewards might
be more suitable for high-dimensional and continuous state-action spaces. However, this is not a
well-studied topic in the literature. The experimental results from using random reward functions as
intrinsic rewards provide hope that such a construction might be possible.

2 Preliminaries

Reinforcement learning (RL) optimizes an agent’s policy in sequential decision-making problems [31].
The agent starts from an initial state s0. At each timestep t, the agent perceives the state st, takes

2

an action at ∼ π(.|st) with its policy π, receives a reward rt = r(st, at, st+1), and transitions to a
next state st+1 until reaching terminal states. The goal of RL is to learn a policy π to maximize the
expected return yielded by the policy π:

max
π

J(π) = Eπ

[∞∑
t=0

γtr(st, at, st+1)
]
. (1)

As the expected return accounts for long-term accumulated rewards, taking greedy action a that
maximizes immediate reward r(s, a) does not necessarily lead to high return. Thus, RL algorithms
require “exploration" actions that lead to low immediate rewards but potentially high return in long run.
We refer to this process as exploration throughout this paper. Many existing works have shown that
exploration bonuses [3, 32, 22, 2] that encourage the policy to visit novel states are crucial for learning
a good policy in hard-exploration tasks [2]. Exploration bonuses (also known as intrinsic rewards) are
introduced into the reward function as follows: r(st, at, st+1) = rE(st, at, st+1) + rI(st, at, st+1),
where rE and rI denote reward from the environment (i.e., task rewards) and exploration bonuses
(i.e., intrinsic rewards), respectively. Our analysis in this paper is established on the intrinsic reward
function given by Random Network Distillation (RND) [3]. RND is among the state-of-the-art
exploration methods that estimates novelty in the following way: A neural network Φ is randomly
initialized, while a predictor neural network Φ̂ parameterized by θ is trained to minimize the loss via
sampling data from the experiences (s, a, s′) collected by the agent:

min
θ

L(θ) = E(s,a,s′)∼π

[∥∥∥Φ̂(s′; θ)− Φ(s′)
∥∥∥2
2

]
, (2)

where s′ denotes next state after taking action a at state s. The intrinsic reward rI is set to be:

rI(st, at, st+1) = ∥Φ̂(st+1; θ)− Φ(st+1)∥22︸ ︷︷ ︸
Prediction error

(3)

This choice of rI can be viewed as state novelty since errors of the predictor network are expected to
be larger for states st+1 which the agent has not frequently seen. In our experiments, we consider
learning a policy using Proximal Policy Optimization (PPO) [26] with intrinsic rewards from RND.

3 Analyzing Why Novelty-Based Intrinsic Motivation Helps Exploration

The common intuition for why RND helps exploration is that (i) the RND reward function measures
state novelty and (ii) a policy trained to optimize RND rewards successfully optimizes the RND
reward function. We observe that these intuitions may not accurately align with the underlying
mechanism of how intrinsic rewards facilitate exploration.

Experimental Setup To demonstrate this, we conduct experiments in a grid world environment
with implementations based on the cleanrl codebase [13]. We train an agent in the grid world using
PPO with only RND rewards (Equation 3) for one million timesteps and monitor how it explores
during training. The agent receives no extrinsic rewards to allow us to test how well an agent that is
trained using RND optimizes purely the RND reward function. The grid world, shown in Figure 2,
has bounds [−5, 5] in both the x and y-axes, the agent spawns at the top right with coordinates (5, 5),
and the agent’s observation is its (x, y) coordinates. The agent can move up, down, left, or right
by 1

5 units per timestep and can move for 1000 timesteps in total per episode. The details of the
experiments, including network architectures and hyperparameters, can be found in Appendix A.

We also analyze the behavior of an RND agent in more complex ATARI games, which are commonly
used to benchmark exploration methods [33]. The implementation of RND we use is based on the
rlpyt codebase [28], and uses Proximal Policy Optimization (PPO) [27] as the base algorithm
for all experiments. We use the same PPO hyperparameters as in [4], which are used across all
games, and use their hyperparameters for RND. We also use the same network architectures for
the policy and value network as in [4]. We consider a set of thirteen ATARI games where RND
significantly outperforms PPO, since it is likely that good performance in these games requires
exploration. We obtained this set of games by considering the games where the mean performance of
RND is significantly higher than PPO based on results in [4]. The list of thirteen games can be found
in Appendix C.1. We train one RND agent on each of these games for 50 million frames, except for
Montezuma’s Revenge, where we train the RND agent for 100 million frames. The agent does not
receive any extrinsic rewards in these experiments as well.

3

cleanrl
rlpyt

y

Episode 10 Episode 20 Episode 30

4 2 0 2 4
x

4

2

0

2

4
y

4 2 0 2 4
x

4

2

0

2

4

PPO Policy (w.r.t RND rewards) Optimal Policy (w.r.t. RND rewards)

4 2 0 2 4
x

4

2

0

2

4

0.000

0.025

1.000

Figure 2: We train an agent in a grid world with no extrinsic rewards using RND. The agent observes
the full state, which is its (x, y) coordinates and spawns at the top right. Top row: Heatmap
visualization of the RND reward (in log scale) taken at different points throughout training. At many
states, the RND reward function does not decrease monotonically during training, implying that RND
is an imperfect representation of novelty. Bottom row: Comparison between the trajectory taken
by the RND agent during training and the trajectory taken by the optimal agent with respect to the
corresponding RND reward function in the top row. The trajectory taken by the optimal agent differs
significantly from the RND agent’s trajectory. Since the RND agent is rarely close to maximizing the
RND reward function, it may not matter how accurate the novelty estimate is.

3.1 Does Novelty-Based Intrinsic Motivation Accurately Estimate Novelty?

Novelty-based exploration strategies such as RND are inspired by the principle of optimism in
the face of uncertainty, which originally motivated exploration bonuses in tabular settings. In the
tabular case, the optimal exploration bonus for a state is a monotonically decreasing function of the
number of times the agent visits that state [29]. Thus, any accurate measure of novelty should also be
monotonically decreasing. We find that the RND exploration bonus does not monotonically decrease,
based on experiments in our simple grid world environment and challenging ATARI games.

Evaluating the Novelty Measure in a Grid World The top row of Figure 2 visualizes the evolution
of the RND reward at every state in the grid world at episodes 10, 20, and 30 respectively with a
symlog scale. Notice that in episode 10, the RND rewards are 0 at the top left corner (circled in red)
of the grid, while in episode 20, the RND rewards have a magnitude close to 0.2 at the top left, where
the reward is highest among all states. Similarly, in episode 20, the RND rewards are close to 0.05
near the bottom middle of the grid, but in episode 30, the RND rewards are maximized at the bottom
middle with a value of approximately 0.1. One objection to this result could be that the capacity of
the predictor network of RND may be too small, causing it to forget the correct predictions in states
that have not been seen recently. To address this, we provide more experiments showing that this can
happen even when the predictor network has increased capacity in Appendix B.

Evaluating the Novelty Measure in ATARI Games We train one agent using RND without
extrinsic rewards for each ATARI game listed in Appendix C.1, and keeping track of the RND
reward function during training. We again find that it is likely for the RND reward function to
not monotonically decrease at all states. To see this, we consider the expected return of a uniform
random policy with respect to the RND reward function at different points of training. Ideally, this
expected return should decrease during training since the distribution of states visited by the random
policy is constant. However, in the majority of games we considered, the expected return does not
monotonically decrease. Plots of the expected return during training can be found in Appendix D.

4

3.2 Is Intrinsic Reward Actually Maximized?

Next, we investigate how well an agent trained to maximize RND performs at optimizing the RND
reward. As our simple grid world environment is tabular, we can compute the optimal policy with
respect to the RND reward function using value iteration.

Table 1: A random policy can achieve higher re-
turns than the RND agent in terms of the RND
reward function in our grid world environment.

Episode Random Policy RND Agent

10 41.01 218.77
15 27.34 14.71
20 21.50 0.62
25 12.03 1.36
30 10.64 0.19
35 5.95 0.25

We compare the RND policy trained using PPO
to the optimal policy. We find that the two poli-
cies are rarely similar, showing that the agent
does not optimize the RND rewards well. In the
bottom row of Figure 2, the agent’s trajectory
(blue) is displayed alongside the optimal agent’s
trajectory (orange). The two trajectories rarely
align, despite both agents starting at the same
state.

We can confirm that the RND rewards are not op-
timized well by comparing the expected return
of the agent to the expected return of a uniform
random policy with respect to the RND reward function throughout training. We take the expectation
over 100 evaluation episodes, and we find that a random policy can achieve higher return than the
agent which is trained for the RND rewards, as shown in Table 1. We present further experiments
across a wider range of hyperparameters in Appendix B.

4 Can Random Reward Functions Explore Similarly to RND?

Since the RND reward function might not accurately represent novelty, and since the RND agent
rarely obtains an effective policy with respect to the RND reward function, we hypothesize that it may
not be important for intrinsic rewards to accurately represent state-novelty to improve exploration. To
test this, we consider an alternate reward function that does not measure novelty, but instead injects
state-dependent noise in the reward function.

4.1 Generating Intrinsic Rewards with Random Potential Functions (RPF)

Intrinsic motivation methods for exploration add bias to the objective of maximizing the extrinsic
reward [35, 4]. Novelty-based rewards tends to decay over training, mitigating this bias. On the
other hand, the process by which the novelty-based reward decays is complex and thus difficult to
emulate using random reward functions. To reduce the bias from random reward functions, we refer
to [19], where it is shown that using a reward shaping term of the form γϕ(s′)− ϕ(s) for a transition
(s, a, s′), does not change the optimality of a policy in the case of an infinite horizon MDP.

Random Potential Functions (RPF) Our algorithm, with pseudocode shown in Appendix E,
periodically randomly initializes an intrinsic reward function. First, we initialize a neural network
Φ which takes in an observation s as input. In our implementation, Φ has the same architecture as
the target network in RND from [4]. For a transition of the form (s, a, s′) where s is the current
observation, a is the action, and s′ is the next observation, RPF defines the intrinsic reward as
ri(s, a, s

′) = γΦ(s′)−Φ(s), which is motivated by the potential-based reward shaping in [19]. Every
n iterations, the last layer of the neural network Φ is re-initialized, where n is a hyperparameter.

Normalization Scheme Because the neural network Φ is untrained, we normalize the observations
s and s′ using a running mean and standard deviation as done by [3] before feeding them into Φ. We
also normalize the rewards by dividing by a running estimate of their standard deviation. Finally, we
normalize the extrinsic rewards using a running mean and standard deviation, which was previously
found to improve the performance of RND in [4].

Visualizing the RPF and RND Agents in the Grid World We visualize the distributions of states
visited by the RPF and RND agents in Figure 3 as a heatmap, and find that the distributions of visited
states appear very similar in terms of their support. Specifically, if the agent visited state s a total
of n times during training, we plot log(n + 1) for that state. This motivates the question: can we

5

RND Visitation Counts RPF Visitation Counts

0

2

4

6

8

10

Figure 3: We visualize the state visitation counts of our RND agent in the grid world on the left.
We also train an agent using RPF, which randomly samples potential-shaped reward functions [19]
to generate intrinsic rewards, and visualize its state visitation counts in the heatmap on the right.
Even though the intrinsic rewards are from randomly sampled reward functions and do not represent
novelty, the distribution of visited states is similar between both methods in terms of their support.

achieve similar improvements in exploration, previously attributed to better novelty measurements,
from choosing the intrinsic reward function randomly?

4.2 Evaluating the Exploration Performance of RPF

We test whether RPF, along with other approaches for randomly generating rewards can improve
performance on ATARI games where exploration is necessary for good performance. Each intrinsic
reward method has its own hyperparameters, shown in Appendix F, which are kept the same across
different games. We train each algorithm for five seeds on each game for 50 million frames, except
for Montezuma’s Revenge, where we train each algorithm for 100 million frames. Different from
Section 3, the agent is now trained to maximize the sum of extrinsic and intrinsic rewards.

To test whether random intrinsic reward functions can improve exploration, we test their performance
on the thirteen games listed in Appendix C.1, where RND significantly outperforms PPO. To see
if our method behaves in a similar way to RND in general, we also test whether our method hurts
performance more than RND does on a subset of eight ATARI games where PPO significantly
outperforms RND. This list of games can be found in Appendix C.2. We also obtain this list based
on the results in [4] by choosing games where the mean score of PPO is significantly higher than
that of RND. While we obtain these two sets of games using mean scores, we report aggregate
performances using the interquartile mean (IQM) as it is robust to outliers while still being sensitive
to the magnitude of many datapoints [1].

Measuring Exploration Performance with RND-Normalized Score To estimate how much
of the improvement from PPO to RND can be captured by RPF, we need a metric which can be
aggregated across different games. Motivated by past works which use a human-normalized score to
do this [1, 17], we also consider a normalized score. However, for our work, we need to estimate the
improvement compared to PPO and RND, so it is helpful to normalize the score of PPO to be 0 and
the score of RND to be 1. Because of the set of games we choose to evaluate the improvement in
exploration of RPF (Appendix C.1), it is possible to use such a metric.

For a given score x, and a game g, the RND-normalized score is defined as:

xRND,g =
x− ScorePPO,g

ScoreRND,g − ScorePPO,g

where ScorePPO,g and ScoreRND,g are the final performances of PPO and RND, respectively, on
game g. We estimate ScorePPO,g and ScoreRND,g by computing the median game score over the
last 10 optimization epochs for each of the 5 runs and taking their mean. To aggregate training runs
over all thirteen games with 5 runs for each game, we first normalize each training run using the
RND-normalized score and compute the IQM over all training runs, as done in Figure 1.

4.3 Can Random Rewards Account for Performance Gains From RND?

We now test the hypothesis that most of the improvement in exploration from novelty-based intrinsic
motivation can be explained by the simple strategy of periodically randomly sampling intrinsic reward
functions. To test this, we consider the thirteen ATARI games listed in Appendix C.1 where RND
significantly outperforms PPO.

6

Table 2: RND-normalized scores of various methods on ATARI games where RND significantly
outperforms PPO (higher is better) in terms of RND-normalized score, where the score of RND
is normalized to 1 and the score of PPO is normalized to 0. RPF matches or exceeds RND in
performance in a majority of games, which occurs when its RND-normalized score on a game is
greater than or equal to 1. Periodically reinitializing the intrinsic reward function is essential to the
performance of RPF. Potential-based shaping is necessary for random reward functions to capture the
majority of the improvement in performance of RND over PPO: making the reward function only a
function of the next state (RSF) does not perform as well. However, applying potential-based shaping
to the RND bonus actually decreases performance on these games compared to RND, suggesting that
the reason for improved exploration with RPF is not solely due to potential-based shaping.

GAME RPF (OURS) RPF–RESETS PRND RSF

ASSAULT 1.29 0.57 0.68 0.77
BERZERK 1.18 0.81 0.94 -0.05
BOWLING 2.29 0.61 0.57 0.59
DEMONATTACK 0.30 0.44 0.06 0.48
FROSTBITE 1.91 1.80 4.27 2.41
ICEHOCKEY 1.56 1.44 1.31 1.32
KANGAROO 1.09 0.93 0.92 1.24
MONTEZUMAREVENGE 0.22 0.0 0.56 0.0
PHOENIX -0.03 -0.03 -0.42 0.84
ROAD RUNNER -0.80 -0.27 0.50 -0.10
SEAQUEST 0.55 0.19 0.70 0.40
TENNIS -0.10 0.94 -0.02 -0.02
VENTURE 1.02 0.64 0.98 0.61

OVERALL SCORE 0.73 0.37 0.65 0.40

RPF Achieves Most of the Performance Gains From RND We plot the RND-normalized score,
aggregated across all thirteen games, in Figure 1. From Figure 1, it is clear that RPF significantly
improves over PPO in games where RND significantly improves over PPO. Figure 1 also shows
that RPF captures most of the improvement which RND has over PPO, which suggests that RPF is
competitive in exploration compared to RND.

Shown in Table 2 is the mean of the RND-normalized score of RPF for each game, along with an
estimate of the IQM over all 65 runs (5 runs per game, 13 games). We show the RND-normalized
score so that performance can be compared across different games. The raw scores can be found in
Appendix G. Based on the estimated IQM over all 65 runs in Table 2, we see that over 70% of the
improvement from RND is captured by RPF, with RPF exceeding RND in performance on a majority
of these games. In particular, RPF exceeds RND on seven of the games: assault,berzerk,
bowling,frostbite,ice_hockey,kangaroo,venture. RPF also improves over PPO on ten
out of thirteen games, which shows how RPF is capturing a majority of the improvement from RND.
We also find that RND does not have a significant chance of improving over RPF (see Appendix G).

Performance of RPF on Other Games We also compare RPF to PPO and RND in games where
PPO significantly improves on RND. This list of games is shown in Appendix C.2. We find that RPF
performs slightly better than RND on these games, with detailed results described in Appendix I.

4.4 Which Parts of RPF Matter?

Network Reinitialization is Necessary for RPF We find that network reinitialization is an essential
component of RPF, without which performance drops significantly. We consider “RPF–Resets,” a
variant of RPF which does not reinitialize the potential function periodically, on the same 13 games
where RND significantly outperforms PPO. As shown in Table 2, RPF performs significantly better
than RPF–Resets. Using network reinitialization improves performance on 10 out of 13 games.
Network reinitialization leads to an aggregate improvement of 0.36 in RND-normalized score, clearly
indicating that it is a necessary component of RPF.

7

assault, berzerk, bowling, frostbite, ice_hockey, kangaroo, venture
assault, berzerk, bowling, frostbite, ice_hockey, kangaroo, venture

Can Other Random Rewards Improve Exploration? We also consider Random State Functions
(RSF), which periodically randomly initializes intrinsic reward functions of just the next state, and
does not use potential-based reward shaping. We find that while it greatly improves over PPO as
shown in Table 2, it is still very far behind RPF. Similar to RPF, RSF initializes a neural network
Φ which takes in an observation s as input. For a transition of the form (s, a, s′), the intrinsic
reward is ri(s, a, s′) = Φ(s′). The neural network Φ is re-initialized every n iterations, where n is
a hyperparameter. Thus, potential-based shaping might be necessary for random reward functions.
One possible explanation could be that mitigating the intrinsic reward bias is necessary as the
random reward functions do not decay throughout training, causing the intrinsic reward bias to harm
performance. RPF mitigates the bias from intrinsic rewards, and we discuss this issue in depth in
Appendix M. In addition, we test “RSF–Resets”, a variant of RSF where the intrinsic reward function
is not reinitialized periodically and is held fixed throughout training. We also test if state-dependent
reward functions are necessary by testing “Normal Noise,” where we simply add normal noise to the
extrinsic rewards. As we show in Appendix H, both these methods significantly underperform RPF.

4.5 Is the Improvement in Exploration Because of Potential Shaping?

In addition to testing the performance of RPF compared to RND on the games where RND shows the
highest improvement over PPO, we also aim to understand why RPF is able to improve exploration
despite not measuring novelty. In this section, we test whether potential-based shaping is the cause of
the improvement, and find that combining it with novelty-based intrinsic motivation hurts exploration.

Potential-based RND (PRND) We test the performance of potential-based shaping applied to
RND on the same set of thirteen ATARI games and find that it hurts performance. Similar to
RND, in PRND, a neural network Φ is randomly initialized, and a predictor neural network Φ̂

parameterized by θ is trained to minimize the loss L(θ) =
∥∥∥Φ̂(s′; θ)− Φ(s′)

∥∥∥2
2
, where s′ is the

next observation. However, in PRND, the intrinsic reward of a transition (s, a, s′) is: ri(s, a, s′) =

γ
∥∥∥Φ̂(s′; θ)− Φ(s′)

∥∥∥2
2
−

∥∥∥Φ̂(s; θ)− Φ(s)
∥∥∥2
2
, where s is the current observation, a is the action,

s′ is the next observation, and γ is the discount rate. Observation, intrinsic, and extrinsic reward
normalization are done in the same way as for RND.

Performance of PRND Where RND is Helpful PRND performs worse than RND on these games,
as shown in Table 2, where PRND has an overall RND-normalized score of 0.65. This suggests
that RND performs better than PRND, while RPF and PRND are comparable in performance. This
implies that combining potential-based shaping with RND can hurt exploration. RND also has a
significant chance of improving over PRND, as we show in Appendix G.

Performance of PRND on Other Games We also test the performance of PRND on the games
listed in Appendix C.2 where PPO significantly improves on RND. Interestingly, PRND performs
better than PPO on these games. We refer the reader to Appendix I for more detailed results.

5 Related Work

Our findings reveals that randomness, if set properly, can show competitive performance with novelty-
based exploration. Randomness plays a vital role in exploration in RL. An example of this is ϵ-greedy
exploration [16]. Entropy regularization is another instance of this [36, 15], which encourages a policy
to explore more by adding the entropy to the objective function. A related approach for encouraging
more random actions by an agent is MaxEnt RL [11, 6, 9], which instead adds the entropy of the
agent’s policy to the reward function to encourage the agent to act as randomly as possible while still
solving the task. Another alternative approach, currently restricted to off-policy methods, is to inject
noise into the policy parameters, rather than the actions [8]. Our method, RPF, can be viewed through
this lens of injecting noise into the agent by instead injecting a transition-dependent perturbation
from a random function other than the policy into the reward function.

Randomness is also involved in novelty-based exploration but in a different form. A variety of
different novelty-based exploration bonuses have been proposed which generate prediction errors as
intrinsic rewards. While many prediction problems used to generate the intrinsic rewards are based

8

on important factors in the environment such as transition dynamics [22, 23, 24], some approaches
randomly generate the prediction problem. A central example of this is RND [3] itself, which
randomly initializes a fixed target network and the prediction problem is to predict the outputs of the
target network. In contrast, RPF simply uses the random reward function for intrinsic motivation.

In addition to randomness, exploration in RL can also benefit from a constant shift in the reward
function. Recent work by [30] suggests that shifting the reward function by a negative constant can
lead to more exploration, while a positive constant leads to more exploitation. However, applying
novelty-based intrinsic rewards and the random reward functions tested in Section 4 to RL involves
shifting the reward function based on states, rather than a constant value or sign. Therefore, constant
shifts alone may not fully explain the exploration gains achieved by these types of reward functions.

6 Discussion

Implications. Since RND only slightly improves over RPF, this suggests that either more accurate
measures of novelty should be created, better learning algorithms which can benefit from better
novelty estimates are required, or estimating novelty may not be an essential piece of exploration. We
do not argue that random reward functions should be used over novelty-based intrinsic motivation.
However, we think this work shows that current approaches to novelty-based intrinsic motivation
may not be the way forward.

Limitations. We find that RPF performs worse than RND in Montezuma’s Revenge, the most popular
ATARI game for benchmarking exploration methods [3, 5], despite performing much better than PPO.
We believe this is due to the non-stationarity of the intrinsic reward from RPF, which does not decay
over time. This is unlike the RND reward function, which tends to decay over training. We discuss
this in detail in Appendix M.

RND Does Not Work the Way You Think It Does. We analyzed the behavior of an agent trained
using RND in Section 3. While it explores far better than PPO, the behavior of the RND reward
function during training violates the intuition that it represents novelty accurately, and the agent’s
exploration behavior violates the intuition that it successfully optimizes the RND reward function.
Some ways to make the behavior of RND match this intuition are to improve novelty estimation
and design learning algorithms which can quickly optimize the RND reward function. However, we
consider designing intrinsic rewards which do not measure novelty as an alternate direction.

Significantly Improving Exploration is Possible with Random Reward Functions.

We design and study RPF, an intrinsic motivation algorithm which generates intrinsic rewards by
periodically randomly initializing an intrinsic reward function. Despite RPF not estimating novelty to
compute intrinsic rewards, we show that RPF captures most of the improvement which RND [3] has
over PPO [27]. We also show that RPF performs comparably to RND when PPO improves on RND.

Explanations for the Performance of RPF. One possible reason why RPF could be improving
performance is that it provides an inductive bias which could either reward the agent for novel
experiences or align with the extrinsic reward. However, this cannot be the case because of two
reasons: First, RPF frequently re-initializes the reward functions, so any inductive bias present in
one iteration of RPF will be reset. Second, the architecture of RPF has a linear layer as its output
layer, which is symmetric about the origin. This means that the intrinsic reward given by RPF is
approximately 0 on average, as we show in Appendix L. An alternative hypothesis for the improved
performance of RPF might be that it improves on RND in games where the RND agent is unable to
effectively optimize the RND reward function, even when compared to a random policy.

Necessary Components of RPF. We find that using a transition-dependent reward function, periodi-
cally reinitializing the reward function, and potential shaping are all crucial to the performance of
RPF. While it is not known whether there exist other ways of randomly generating reward functions
which perform as well or better than RPF in the context of exploration, other random reward functions
have also been proposed such as Random Network Indicators [7]. Since RPF is only one way to
randomly generate reward functions, it may be possible to further improve these methods and go
beyond the performance of RND.

9

References
[1] Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Belle-

mare. Deep reinforcement learning at the edge of the statistical precipice. Advances in Neural
Information Processing Systems, 34, 2021.

[2] Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi
Munos. Unifying count-based exploration and intrinsic motivation. In NIPS, 2016.

[3] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random
network distillation. In International Conference on Learning Representations, 2019.

[4] Eric Chen, Zhang-Wei Hong, Joni Pajarinen, and Pulkit Agrawal. Redeeming intrinsic rewards
via constrained optimization. arXiv preprint arXiv:2211.07627, 2022.

[5] Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. First return,
then explore. Nature, 590(7847):580–586, 2021.

[6] Benjamin Eysenbach and Sergey Levine. Maximum entropy rl (provably) solves some robust rl
problems. arXiv preprint arXiv:2103.06257, 2021.

[7] Jesse Farebrother, Joshua Greaves, Rishabh Agarwal, Charline Le Lan, Ross Goroshin,
Pablo Samuel Castro, and Marc G Bellemare. Proto-value networks: Scaling representation
learning with auxiliary tasks. arXiv preprint arXiv:2304.12567, 2023.

[8] Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband, Alex
Graves, Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, et al. Noisy networks for
exploration. arXiv preprint arXiv:1706.10295, 2017.

[9] Divyansh Garg, Joey Hejna, Matthieu Geist, and Stefano Ermon. Extreme q-learning: Maxent
rl without entropy. arXiv preprint arXiv:2301.02328, 2023.

[10] Zhaohan Daniel Guo, Shantanu Thakoor, Miruna Pîslar, Bernardo Avila Pires, Florent Altché,
Corentin Tallec, Alaa Saade, Daniele Calandriello, Jean-Bastien Grill, Yunhao Tang, et al.
Byol-explore: Exploration by bootstrapped prediction. arXiv preprint arXiv:2206.08332, 2022.

[11] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. arXiv preprint
arXiv:1801.01290, 2018.

[12] Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel. Vime:
Variational information maximizing exploration. In NIPS, 2016.

[13] Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty,
Kinal Mehta, and João G.M. Araújo. Cleanrl: High-quality single-file implementations of
deep reinforcement learning algorithms. Journal of Machine Learning Research, 23(274):1–18,
2022.

[14] J Zico Kolter and Andrew Y Ng. Near-bayesian exploration in polynomial time. In Proceedings
of the 26th annual international conference on machine learning, pages 513–520, 2009.

[15] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy P Lill-
icrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep
reinforcement learning. In ICML, 2016.

[16] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[17] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan
Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement
learning. Nature, 2015.

10

[18] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[19] Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transfor-
mations: Theory and application to reward shaping. In Icml, volume 99, pages 278–287,
1999.

[20] Georg Ostrovski, Marc G Bellemare, Aäron Oord, and Rémi Munos. Count-based exploration
with neural density models. In International conference on machine learning, pages 2721–2730.
PMLR, 2017.

[21] Pierre-Yves Oudeyer, Frdric Kaplan, and Verena V Hafner. Intrinsic motivation systems for
autonomous mental development. Evolutionary Computation, 2007.

[22] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In Proceedings of the 34th International Conference on Machine
Learning, pages 2778–2787, 2017.

[23] Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised exploration via disagree-
ment. In International Conference on Machine Learning, pages 5062–5071. PMLR, 2019.

[24] Aditya Ramesh, Louis Kirsch, Sjoerd van Steenkiste, and Jürgen Schmidhuber. Exploring
through random curiosity with general value functions. arXiv preprint arXiv:2211.10282, 2022.

[25] Jurgen Schmidhuber. A possibility for implementing curiosity and boredom in model-building
neural controllers. In From animals to animats: Proceedings of the first international conference
on simulation of adaptive behavior, 1991.

[26] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[27] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. CoRR, abs/1707.06347, 2017.

[28] Adam Stooke and Pieter Abbeel. rlpyt: A research code base for deep reinforcement learning in
pytorch. arXiv preprint arXiv:1909.01500, 2019.

[29] Alexander L Strehl and Michael L Littman. An analysis of model-based interval estimation for
markov decision processes. Journal of Computer and System Sciences, 74(8):1309–1331, 2008.

[30] Hao Sun, Lei Han, Rui Yang, Xiaoteng Ma, Jian Guo, and Bolei Zhou. Optimistic curiosity
exploration and conservative exploitation with linear reward shaping. In Advances in Neural
Information Processing Systems, 2022.

[31] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. 2018.

[32] Adrien Ali Taïga, William Fedus, Marlos C Machado, Aaron Courville, and Marc G Bellemare.
Benchmarking bonus-based exploration methods on the arcade learning environment. arXiv
preprint arXiv:1908.02388, 2019.

[33] Adrien Ali Taiga, William Fedus, Marlos C. Machado, Aaron Courville, and Marc G. Bellemare.
On bonus based exploration methods in the arcade learning environment. In International
Conference on Learning Representations, 2020.

[34] Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen, Yan Duan, John Schulman,
Filip De Turck, and Pieter Abbeel. # exploration: A study of count-based exploration for deep
reinforcement learning. In 31st Conference on Neural Information Processing Systems (NIPS),
volume 30, pages 1–18, 2017.

[35] William F Whitney, Michael Bloesch, Jost Tobias Springenberg, Abbas Abdolmaleki,
Kyunghyun Cho, and Martin Riedmiller. Decoupled exploration and exploitation policies
for sample-efficient reinforcement learning. arXiv preprint arXiv:2101.09458, 2021.

[36] Ronald J Williams and Jing Peng. Function optimization using connectionist reinforcement
learning algorithms. Connection Science, 3(3):241–268, 1991.

11

A Grid World Experiment Details

Hyperparameters We list the hyperparameters and configurations for the experiments described in
Section 3 in Table 3. However, we present further experiments with a different set of architectures for
the RND predictor and target networks in Appendix B. We also present further experiments with a
wider range of entropy loss coefficients in Appendix B, to show that the RND return achieved by the
policy is not because of a low entropy coefficient.

Compute Usage Each individual run takes approximately 5 minutes on a MacBook Pro. Across all
experiments in our grid world environment, we tested approximately 30 runs in total.

Table 3: Hyperparameters and network architectures for grid world experiments.

Parameter Value

PPO
Total Timesteps 1, 000, 000
Optimizer Adam
Learning Rate 0.001
Adam Epsilon 0.00001
Number of Parallel Environments 32
Discount Rate 0.99
Generalized Advantage Estimation λ 0.99
Minibatches per Epoch 4
Epochs per Training Step 4
Clipping Coefficient 0.2
Entropy Loss Weight 0.01
Discount Rate 0.99
Value Loss Weight 0.5
Gradient Norm Bound 0.5
Use Advantage Normalization True
Use Clipped Value Loss True
Policy Network Architecture MLP (64,64,4)
Value Network Architectures MLP (64,64,1)

RND
Intrinsic Reward Coefficient 1.0
Drop Probability 0.25
Learning Rate 0.0001
Predictor Network Architecture MLP (64,64,4,4,4)
Target Network Architecture MLP (64,64,4)

RPF
Intrinsic Reward Coefficient 1.0
Epochs Before Resetting 10
Potential Function Network Architecture MLP (64,64,4)

Value Iteration
Maximum Number of Iterations 10, 000
Tolerance Before Stopping 0.0001

B Further Grid World Experiments

Increasing the RND Predictor Network Capacity In Section 3.1, we showed that it is possible
for the RND reward function to not be monotonically decreasing at every state, indicating that it is an
imperfect estimate of novelty. Here, we show that even when the capacity of the RND reward function
is increased, it is still possible for the rewards to not be monotonically decreasing. Specifically,
we change the architecture of the RND predictor network to be MLP (64,64,256,256,256,256,256),
and the architecture of the RND target network to be MLP (64,64,256). Note that there are only

12

y

Episode 10 Episode 20 Episode 30

0.000

0.025

1.000

Figure 4: Heatmap visualization of the RND reward function (in log scale) taken at different points
throughout training. Even when the predictor network has increased capacity, it is possible for the
rewards to not be monotonically decreasing, as shown in the red circle.

Table 4: Returns of a random policy and an RND agent with respect to the RND reward function in
our grid world environment, with different entropy coefficients.

Entropy Loss Coefficient Episode Random Policy RND Agent

0.001 10 112.33 4.62
15 17.97 20.05
20 36.44 3.50
25 16.49 1.77
30 13.98 1.24
35 8.52 1.89

0.01 10 41.01 218.77
15 27.34 14.71
20 21.50 0.62
25 12.03 1.36
30 10.64 0.19
35 5.95 0.25

0.1 10 68.73 24.20
15 21.10 2.65
20 11.05 18.56
25 26.96 0.97
30 36.37 53.22
35 7.18 0.32

1.0 10 17.90 4.12
15 7.09 8.56
20 4.55 0.85
25 4.17 1.97
30 3.03 2.32
35 3.75 0.81

50 · 50 = 2500 states, implying that in this case, the predictor network is overparameterized. We
show the RND reward function at different points during training in Figure 4, and shown in the red
circle is a region where the reward increases throughout training. Thus, since a good estimate of
novelty should monotonically decreasing at all states, RND is an imperfect estimate of novelty even
with increased network capacity.

Varying the Entropy Coefficient In Section 3.2, we showed that it is possible to achieve higher
RND returns with a uniform random policy, compared to the RND agent which was actually trained
with the RND rewards. One possible explanation for this is that the agent’s policy is not random
enough, and therefore the entropy loss coefficient used to train the RND agent is too low. We refute
this possibility in Table 4, where we keep the original architecture of the RND predictor and target
networks the same and vary the entropy loss coefficient. Over a variety of entropy loss coefficients,
we find that the random policy usually achieves higher RND return than the RND agent itself.

13

C Lists of ATARI Games

C.1 ATARI Games Where RND Significantly Outperforms PPO

• assault

• berzerk

• bowling

• demon_attack

• frostbite

• ice_hockey

• kangaroo

• montezuma_revenge

• phoenix

• road_runner

• seaquest

• tennis

• venture

C.2 ATARI Games Where PPO Significantly Outperforms RND

• amidar

• carnival

• elevator_action

• gopher

• hero

• enduro

• star_gunner

• zaxxon

D Does RND Reward Monotonically Decrease in ATARI Games?

As we claimed in Section 3.1, the expected RND return achieved by a random policy does not
monotonically decrease in the majority of games where RND outperforms PPO (Appendix C.1). We
observed that at initialization, the agent’s policy is very close to a uniform random policy, which
means the RND predictor network is initially trained on a state distribution similar to that of a
random policy. However, as we show in Figure 5, the RND reward function is rarely monotonically
decreasing, implying that it is an imperfect measure of novelty.

E Pseudocode for RPF

The pseudocode for RPF is shown in Algorithm 1.

F Further Details of ATARI Experiments

Hyperparameters We display the hyperparameters for the different intrinsic rewards we considered
in Table 5. Our base algorithm for all experiments is PPO [27], and we use the hyperparameters
directly from [4]. We do not tune the hyperparameters of RND and obtain them directly from [4]. For
the different strategies of generating random intrinsic rewards that we considered (RPF, RPF–Resets,
RSF, RSF–Resets, Normal Noise), we first tuned the hyperparameters displayed in Table 5 on the
hard-exploration ATARI game Venture. Specifically, we considered intrinsic reward coefficients in

14

 assault
 berzerk
 bowling
 demon_attack
 frostbite
 ice_hockey
 kangaroo
 montezuma_revenge
 phoenix
 road_runner
 seaquest
 tennis
 venture
 amidar
 carnival
 elevator_action
 gopher
 hero
 enduro
 star_gunner
 zaxxon

500 1000 1500 2000 2500

15

17

R
et

ur
n

U
nd

er
 R

N
D

 R
ew

ar
d

Assault

500 1000 1500 2000 2500

15

20

Berzerk

500 1000 1500 2000 2500

5

10

Bowling

500 1000 1500 2000 2500

70

90

R
et

ur
n

U
nd

er
 R

N
D

 R
ew

ar
d

DemonAttack

500 1000 1500 2000 2500
10

20

Frostbite

500 1000 1500 2000 2500

300

400

IceHockey

500 1000 1500 2000 2500

5

10

R
et

ur
n

U
nd

er
 R

N
D

 R
ew

ar
d

Kangaroo

1000 2000 3000 4000 5000

15

20

MontezumaRevenge

500 1000 1500 2000 2500

60

80

Phoenix

500 1000 1500 2000 2500

6

10

R
et

ur
n

U
nd

er
 R

N
D

 R
ew

ar
d

RoadRunner

500 1000 1500 2000 2500
Training Step

25

35

Seaquest

500 1000 1500 2000 2500
Training Step

60

90

Tennis

500 1000 1500 2000 2500
Training Step

125

150

R
et

ur
n

U
nd

er
 R

N
D

 R
ew

ar
d

Venture

Figure 5: Expected return of a random policy under the RND reward function in 13 ATARI games
where RND outperforms PPO. The expected return of the random policy is calculated over 100
episodes.

15

Algorithm 1 Intrinsic Rewards with RPF
Niter ← total number of iterations
P ← number of parallel environments
T ← length of rollout in each environment
n← max iterations per reward function
γ ← discount rate

Initialize neural network Φ
Sample initial observation s0 ∼ p(s0)
for i = 1 to Niter do

for j = 1 to P do
for k = 1 to T do

sample action a ∼ π(a | s)
sample next observation s′ ∼ π(s′ | s, a)
Calculate intrinsic reward γΦ(s′)− Φ(s)

end for
end for
if i ≡ 0 (mod n) then

Re-initialize Φ
end if

end for

the set {0.01, 0.1, 1.0} and number of epochs before resetting (if applicable) in the set {1, 5, 10, 20}
and ran each combination on Venture for three seeds. We chose the combination which had highest
performance on average. For PRND, we tuned the intrinsic reward coefficient according to the same
procedure among the options of {0.01, 0.1, 1.0}.

Compute Usage Each individual seed of our strategies for randomly generating intrinsic rewards
took approximately 3 hours on an NVIDIA RTX A6000 for 50 million frames. In Montezuma’s
Revenge, each agent is trained for 100 million frames, so each seed takes approximately 6 hours.
Across all experiments in ATARI games, we tested approximately 900 runs in total.

G Detailed Results on Games Where RND Outperforms PPO

We list the mean scores of all the methods in games where RND outperforms PPO in Table 6. We also
compute the probability that RND improves over PPO, RPF, and PRND in these games in Figure 6.

Probability of Improvement of RPF We find that RND does not have a significant chance of
improving over RPF, suggesting that the benefit to exploration from the novelty estimation done by
RND is small. In these ATARI games, RPF has a probability of 0.41± 0.05 of improving over RND
as shown in Figure 6, where the 95% confidence interval is estimated using the bootstrap method.

Probability of Improvement of PRND PRND performs worse than RND on these games, as
shown in Figure 6, where PRND has a probability of 0.38 ± 0.05 of improving over RND. This
suggests that RND performs better than PRND, while RPF and PRND are comparable in performance.

H Results of RSF–Resets and Normal Noise

We also test two more strategies of randomly generating intrinsic rewards.

RSF–Resets In “RSF–Resets,” the intrinsic reward is ri(s, a, s
′) = Φ(s′), but Φ is never re-

initialized. To compensate for the consistent bias introduced by the random intrinsic reward function,
we decrease the coefficient η of the intrinsic reward for this method.

Normal Noise We also test whether it is possible to improve over PPO in games where RND
significantly outperforms PPO without using a state-dependent reward function. To test this, we
sample intrinsic rewards from the normal distribution N (0, 1) and multiply by a scalar constant η.

16

Table 5: Hyperparameters for different ways of generating intrinsic rewards.

Parameter Value

RND
Intrinsic Reward Coefficient 1.0
Drop Probability 0.25
Learning Rate 0.0001

RPF
Intrinsic Reward Coefficient 0.1
Epochs Before Resetting 5

RPF–Resets
Intrinsic Reward Coefficient 0.1

RSF
Intrinsic Reward Coefficient 0.1
Epochs Before Resetting 5

RSF–Resets
Intrinsic Reward Coefficient 0.01

Normal Noise
Intrinsic Reward Coefficient 0.1

PRND
Intrinsic Reward Coefficient 1.0
Drop Probability 0.25
Learning Rate 0.0001

Table 6: Mean scores of various methods on the games where RND significantly outperforms PPO.

GAME PPO RND RPF PRND RSF RSF–RESETS NOISE

ASSAULT 8426.3 11231.0 12042.6 10321.7 10576.9 8396.9 9011.2
BERZERK 1132.4 1448.7 1504.8 1429.7 1116.6 1329.1 1139.7
BOWLING 18.0 24.2 32.2 21.6 21.7 35.1 14.7
DEMONATTACK 5621.9 9123.9 6681.1 5842.4 7289.4 6332.3 5260.4
FROSTBITE 1080.0 1740.3 2340.9 3900.8 2669.4 4454.6 955.8
ICEHOCKEY 5.6 8.8 10.6 9.8 9.8 9.5 6.9
KANGAROO 6125.3 8272.9 8463.2 8108.1 8794.3 10826.1 9055.1
MONTEZUMAREVENGE 0.1 2496.0 546.4 1389.6 0.0 0.0 2.6
PHOENIX 8134.1 10905.8 8058.9 6963.7 10456.2 8315.8 4411.7
ROAD RUNNER 46687.2 59545.0 36377.3 53168.6 45358.2 58217.2 31462.7
SEAQUEST 1463.8 1989.3 1752.1 1831.9 1671.5 1877.0 1326.1
TENNIS -0.1 4.6 -0.49 -0.16 -0.2 -0.3 9.0
VENTURE 104.5 1370.1 1392.9 1343.6 879.2 808.1 387.7

We present the RND-normalized score of the two methods in Table 7.

I Performance On Games where PPO Outperforms RND

As we showed in Section 4.3, it is possible to obtain a large majority of the gain in performance due to
RND by using RPF, i.e., without measuring any form of novelty. However, one might wonder if this
comes at a cost: in games where PPO significantly outperforms RND, does RPF get outperformed by
RND? In the analysis conducted below, we find that RPF and RND perform similarly on such games,
indicating that RPF and RND generally perform similarly.

We consider a set of eight ATARI games, listed in Appendix C.2, where PPO significantly outperforms
RND. On these games, PPO has a probability of improvement of 0.65± 0.06 over RND, as shown

17

PPO RPF PRND
Algorithm

0.1

0.2

0.3

0.4

0.5

0.6

P
(A

 >
 R

N
D

)

0.19

0.41

0.38

Figure 6: We compare RND to RPF on the set of thirteen ATARI games, listed in Appendix C.1,
where RND significantly outperforms PPO. RPF, shown in blue, has a probability of improvement [1]
of 0.41±0.05 over RND on this set of games, indicating that it has performance close to that of RND.
Meanwhile, PPO, shown in green, only has a probability of improvement of 0.19±0.04 over RND on
these games, showing that this is indeed a set of games where novelty-based intrinsic motivation leads
to large improvements over pure extrinsic reward maximization. This improvement in performance
over PPO is not orthogonal to RND and not solely due to potential-based reward shaping, since
potential-based RND (PRND) has a probability of improvement over RND of 0.38± 0.05, which is
slightly lower than that of RPF.

in Figure 7, showing that PPO indeed significantly outperforms RND on this set of games. We also
find that RPF slightly outperforms RND with a probability of improvement of 0.53 ± 0.07. Thus,
the probability of improvement of RPF over RND is less than that of PPO over RND, showing that
RPF is also outperformed by PPO on these games. However, as the probability of improvement of
RPF over RND is over 0.5, this means RPF and RND perform comparably. We also present the game
breakdown of RPF in Table 8, where we see that RPF improves on RND in a majority of games in
terms of the IQM of game score, further validating our claim that RPF performs comparably to RND
on these games.

We also test the performance of potential shaping applied to RND on these games. Despite PRND
being a novelty-based intrinsic motivation technique, it performs the best out of all methods, having
the highest probability of improvement over RND of 0.72 ± 0.06 as shown by the purple bar in
Figure 7. As shown in Table 8, PRND outperforms PPO in six out of eight games. This suggests that
even when PPO outperforms RND, increased exploration can improve performance, provided the
intrinsic reward bias is alleviated through methods such as potential shaping.

J Learning Curves on All ATARI Games

We plot the learning curves of PPO, RND, RPF, and PRND in 60 ATARI games in Figure 8. For
PRND, we only plot learning curves on the 21 ATARI games listed in Appendix C as we only ran
experiments on those games.

18

Table 7: RND-normalized scores of RSF–Resets and Normal Noise, two further methods of randomly
generating rewards, on ATARI games where RND significantly outperforms PPO (higher is better).
RSF–Resets improves significantly over PPO but does not reach the performance of RPF, indicating
that the combination of potential shaping and network reinitialization is important for performance of
our random rewards. Sampling the intrinsic rewards from a normal distribution that is independent of
state does not improve performance at all, showing that it is necessary for intrinsic rewards to take in
at least the next state as input. Each method was tested on each game for five random seeds.

GAME RSF–RESETS NORMAL NOISE

ASSAULT -0.01 0.21
BERZERK 0.62 0.02
BOWLING 2.77 -0.53
DEMONATTACK 0.20 -0.10
FROSTBITE 5.11 -0.18
ICEHOCKEY 1.21 0.41
KANGAROO 2.19 1.36
MONTEZUMAREVENGE 0.0 0.0
PHOENIX 0.06 -1.34
ROAD RUNNER 0.90 -1.18
SEAQUEST 0.79 -0.26
TENNIS -0.06 1.95
VENTURE 0.56 0.22

OVERALL SCORE 0.45 -0.15

Table 8: Mean game score over five random seeds for various methods on ATARI games where PPO
outperforms RND (higher is better). Our method, RPF, performs similarly to RND, showing that
using random reward functions may not hurt performance any more than novelty-based exploration
hurts performance. Interestingly, PRND achieves the best performance on six out of these eight
games, even though this set of games is chosen so that PPO outperforms RND.

GAME PPO RND RPF (OURS) PRND

AMIDAR 1075.3 774.7 851.9 1104.5
CARNIVAL 5040.3 4524.7 4941.7 5366.6
ELEVATORACTION 47699.7 11288.8 22721.8 43513.5
GOPHER 6047.3 2902.2 3418.2 13653.5
HERO 29724.3 26787.1 29467.8 33514.9
ENDURO 1040.3 834.0 889.4 1150.4
STARGUNNER 21175.7 17409.3 10907.0 23223.6
ZAXXON 14614.4 11556.6 14839.9 11637.1

K Scores on All ATARI Games

We show the mean performance of RPF on all 61 ATARI games in comparison to PPO and RND in
Table 9. In total, RPF matches PPO in 34 games and matches RND in 30 games, indicating that it
performs similarly overall to both methods. Finally, RPF performs better than both PPO and RND in
21 games, or approximately one-third of the games.

L Magnitudes of Intrinsic Rewards Across Games

One potential hypothesis for the observed performance improvement of RPF in games where RND
improves on PPO is that the reward provided by RPF is an inductive bias that could be aligned with
either novelty or certain games. We offer evidence to the contrary here, by showing in Table 10
that the average value of the intrinsic rewards of RPF is close to 0. Therefore, there is no strong
correlation between whether performance is improved and the average intrinsic reward of RPF. This
is to be expected: the reward function given by RPF resets periodically, without allowing the policy
to update enough in time to maximize the RPF rewards.

19

Table 9: Mean game score (higher is better) over five random seeds of PPO, RND, and RPF on 61
ATARI games.

GAME PPO RND RPF (OURS)

ADVENTURE 0.0 0.0 0.0
AIRRAID 36081.2 35409.2 37809.1
ALIEN 1913.0 2219.7 1978.1
AMIDAR 1075.3 774.7 851.9
ASSAULT 8426.3 11231.0 12042.6
ASTERIX 15093.2 17486.5 16858.2
ASTEROIDS 1351.7 1455.7 1301.7
BANKHEIST 1336.8 1341.7 1336.1
BATTLEZONE 83508.0 78586.0 55331.0
BEAMRIDER 7385.3 7605.1 7922.9
BERZERK 1132.4 1448.7 1504.8
BOWLING 18.0 24.2 32.2
BOXING 79.1 80.0 79.9
BREAKOUT 574.5 578.9 564.7
CARNIVAL 5040.2 4524.7 4941.7
CENTIPEDE 5953.2 6755.0 5517.2
CHOPPERCOMMAND 8713.6 8633.5 9601.5
CRAZYCLIMBER 149496.8 137229.1 136929.8
DEMONATTACK 5621.9 9123.9 6681.1
DOUBLEDUNK -1.3 -1.3 3.5
ELEVATORACTION 47699.7 11288.8 22721.8
ENDURO 1040.3 834.0 889.4
FISHINGDERBY 36.5 26.5 37.3
FREEWAY 31.1 33.4 33.1
FROSTBITE 1080.0 1740.3 2340.9
GOPHER 6047.3 2902.2 3418.2
GRAVITAR 1700.8 1895.0 1789.1
HERO 29724.3 26787.1 29467.8
ICEHOCKEY 5.6 8.8 10.6
JAMESBOND 13344.4 13706.1 11771.9
JOURNEYESCAPE -505.6 -659.8 -489.6
KABOOM 1875.0 1879.1 1864.8
KANGAROO 6125.3 8272.9 8463.2
KRULL 9875.1 9857.2 9564.0
KUNGFUMASTER 46230.8 48777.3 42361.3
MONTEZUMAREVENGE 0.1 2496.0 546.4
MSPACMAN 5007.7 5371.9 4491.0
NAMETHISGAME 11093.4 10313.7 11273.0
PHOENIX 8134.1 10905.8 8058.9
PITFALL 0.0 -4.8 -1.2
PONG 20.8 20.9 20.6
POOYAN 5744.2 5665.1 4628.0
PRIVATEEYE 96.7 112.6 99.6
QBERT 21943.2 22715.3 24205.1
RIVERRAID 10323.9 11837.7 13476.5
ROADRUNNER 46687.2 59545.0 36377.3
ROBOTANK 37.8 38.7 46.2
SEAQUEST 1463.8 1989.0 1752.1
SKIING -12144.4 -11598.9 -9918.0
SOLARIS 2473.5 2255.2 2218.3
SPACEINVADERS 1624.1 1504.5 1586.0
STARGUNNER 21175.7 17409.3 10907.0
TENNIS -0.1 4.6 -0.5
TIMEPILOT 19941.0 21414.2 20824.3
TUTANKHAM 198.4 231.7 221.1
UPNDOWN 276967.0 311471.2 304187.1
VENTURE 104.5 1370.1 1392.9
VIDEOPINBALL 368909.2 364614.4 428003.5
WIZARDOFWOR 11163.7 11635.2 10858.3
YARSREVENGE 92387.3 85691.1 113623.3
ZAXXON 14614.4 11556.6 14839.9

20

PPO RPF PRND
Algorithm

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
(A

 >
 R

N
D

)

0.65

0.53

0.72

Figure 7: On the set of eight ATARI games (Appendix C.2) where we test how much RPF drops
in performance compared to how much RND drops in performance, PPO significantly outperforms
RND. PPO, shown in green, has a probability of improvement of 0.65 ± 0.06 over RND on these
games, showing that PPO significantly improves over RND on these games. RPF, shown in blue,
has a probability of improvement of 0.53± 0.07 over RND on this same set of games, showing that
RPF and RND perform comparably on these games. However, applying potential shaping to RND,
shown in purple, gives a probability of improvement over RND of 0.72 ± 0.06, performing even
better than PPO. This suggests that exploration can still be beneficial in these games, and that RND is
not exploring optimally.

M Limitations

As we show in Table 2, the performance of random reward functions greatly improves when using
potential-based reward shaping. We hypothesize that this is because too much reliance on random
reward functions can lead to the agent forgetting how to obtain previous rewards or to return to states
it has visited in the past. Using potential shaping alleviates the issue of relying too much on the
random intrinsic reward function to a large extent.

However, potential shaping does not completely fix this issue. As shown in Figure 9, RND signifi-
cantly outperforms RPF in Montezuma’s Revenge, the most popular ATARI game for benchmarking
exploration methods [3, 5]. While RPF significantly improves over PPO in Montezuma’s Revenge,
we can see that the learning curve is unstable. We believe this is because of the nonstationary intrinsic
reward function which does not decay over time. As the intrinsic reward function is constantly
changing, the agent may be prevented from memorizing promising regions of its environment to
explore. However, since the reward function for RND updates smoothly throughout training, we
hypothesize that RND does not suffer from this issue.

Still, using only Montezuma’s Revenge to evaluate the exploration ability of an agent can lead to
unreliable results which do not hold in different environments [33]. Despite the fact that RND
significantly outperforms RPF in Montezuma’s Revenge, RND is only slightly better than RPF in
aggregate, as we show in Section 4.3.

21

0 20 40
0

20000

40000

S
co

re

Env = air_raid

0 20 40

1000

2000

Env = alien

0 20 40
0

1000

Env = amidar

0 20 40
0

5000

10000

Env = assault

0 20 40
0

10000

20000

Env = asterix

0 20 40

1000

1500

S
co

re

Env = asteroids

0 20 40
0

500

1000

Env = bank_heist

0 20 40
0

50000

100000

Env = battle_zone

0 20 40
0

5000

Env = beam_rider

0 20 40

500

1000

1500

Env = berzerk

0 20 40

20

40

S
co

re

Env = bowling

0 20 40
0

50

100
Env = boxing

0 20 40
0

250

500

Env = breakout

0 20 40

2000

4000

6000
Env = carnival

0 20 40
2000

4000

6000

Env = centipede

0 20 40

5000

10000

S
co

re

Env = chopper_command

0 20 40

50000

100000

150000
Env = crazy_climber

0 20 40
0

5000

10000

Env = demon_attack

0 20 40
20

0

Env = double_dunk

0 20 40
0

50000

Env = elevator_action

0 20 40
0

500

1000

S
co

re

Env = enduro

0 20 40
100

0

Env = fishing_derby

0 20 40

10

20

30

Env = freeway

0 20 40
0

2500

5000

Env = frostbite

0 20 40
0

10000

20000

Env = gopher

0 20 40

1000

2000

S
co

re

Env = gravitar

0 20 40
0

20000

Env = hero

0 20 40
10

0

10
Env = ice_hockey

0 20 40
0

10000

Env = jamesbond

0 20 40

10000

0
Env = journey_escape

0 20 40
0

1000

2000

S
co

re

Env = kaboom

0 20 40
0

5000

10000

Env = kangaroo

0 20 40

5000

10000
Env = krull

0 20 40
0

25000

50000

Env = kung_fu_master

0 50
0

1000

2000

Env = montezuma_revenge

0 20 40

2500

5000

S
co

re

Env = ms_pacman

0 20 40

5000

10000

Env = name_this_game

0 20 40

5000

10000

Env = phoenix

0 20 40

50

0
Env = pitfall

0 20 40
20

0

20
Env = pong

0 20 40

2500

5000

S
co

re

Env = pooyan

0 20 40

250

0

250
Env = private_eye

0 20 40
0

10000

20000

Env = qbert

0 20 40

5000

10000

15000
Env = riverraid

0 20 40
0

50000

Env = road_runner

0 20 40
0

20

40

S
co

re

Env = robotank

0 20 40

1000

2000

Env = seaquest

0 20 40

20000

10000

Env = skiing

0 20 40
1000

2000

3000

Env = solaris

0 20 40

500

1000

1500

Env = space_invaders

0 20 40
0

20000

S
co

re

Env = star_gunner

0 20 40

20

0

Env = tennis

0 20 40

10000

20000

Env = time_pilot

0 20 40

100

200

Env = tutankham

0 20 40
0

200000

Env = up_n_down

0 20 40
Frames (millions)

0

1000

S
co

re

Env = venture

0 20 40
Frames (millions)

0

200000

400000

Env = video_pinball

0 20 40
Frames (millions)

0

5000

10000

Env = wizard_of_wor

0 20 40
Frames (millions)

0

100000

Env = yars_revenge

0 20 40
Frames (millions)

0

10000

Env = zaxxon

PPO
RND
PRND
RPF (ours)

Figure 8: Learning curves of PPO, RND, RPF, and PRND on 60 ATARI games. Each curve displays
the mean score of a method over 5 random seeds.

22

Table 10: The average intrinsic reward of RPF over each run is close to 0. There is no clear correlation
between the sign of the intrinsic reward and whether RPF outperforms RND in a game.

GAME AVERAGE INTRINSIC REWARD RPF OUTPERFORMS RND

ASSAULT −3.58 · 10−6 TRUE
BERZERK −1.82 · 10−6 TRUE
BOWLING −5.67 · 10−6 TRUE
DEMONATTACK 1.81 · 10−6 FALSE
FROSTBITE −8.39 · 10−6 TRUE
ICEHOCKEY 2.12 · 10−6 TRUE
KANGAROO 4.18 · 10−6 TRUE
MONTEZUMAREVENGE −1.88 · 10−6 FALSE
PHOENIX −4.26 · 10−6 FALSE
ROADRUNNER 2.89 · 10−6 FALSE
SEAQUEST −9.34 · 10−6 FALSE
TENNIS −2.91 · 10−5 FALSE
VENTURE 4.49 · 10−6 TRUE

1000 2000 3000 4000 5000 6000
Training Steps

0

500

1000

1500

2000

2500

G
am

e
S

co
re

RPF (Ours)
RND
PPO

Figure 9: Learning curves of PPO, RPF, and RND on Montezuma’s Revenge. While RPF clearly
outperforms PPO, RPF is significantly outperformed by RND. The curves show the mean scores across
all five runs per method. Shaded area is the 95% confidence interval, estimated using bootstrapping.

23

	Introduction
	Preliminaries
	Analyzing Why Novelty-Based Intrinsic Motivation Helps Exploration
	Does Novelty-Based Intrinsic Motivation Accurately Estimate Novelty?
	Is Intrinsic Reward Actually Maximized?

	Can Random Reward Functions Explore Similarly to RND?
	Generating Intrinsic Rewards with Random Potential Functions (RPF)
	Evaluating the Exploration Performance of RPF
	Can Random Rewards Account for Performance Gains From RND?
	Which Parts of RPF Matter?
	Is the Improvement in Exploration Because of Potential Shaping?

	Related Work
	Discussion
	Grid World Experiment Details
	Further Grid World Experiments
	Lists of ATARI Games
	ATARI Games Where RND Significantly Outperforms PPO
	ATARI Games Where PPO Significantly Outperforms RND

	Does RND Reward Monotonically Decrease in ATARI Games?
	Pseudocode for RPF
	Further Details of ATARI Experiments
	Detailed Results on Games Where RND Outperforms PPO
	Results of RSF–Resets and Normal Noise
	Performance On Games where PPO Outperforms RND
	Learning Curves on All ATARI Games
	Scores on All ATARI Games
	Magnitudes of Intrinsic Rewards Across Games
	Limitations

